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Abstract: This paper presents a Nonlinear Model Based Predictive Controller
(NMBPC) of a buck-boost converter (BBC). The NMBPC uses a nonlinear
prediction of the system outputs based on a discretization of the average continuous
model of the BBC, assuming the duty ratio as the control variable. A classical
quadratic cost function J is minimized at each sample time using a Sequential
Quadratic Programming (SQP) optimization algorithm that guarantees that the
obtained control action gives a local optimal value of J . The tuning of the controller
parameters is defined to obtain a compromise between performance and robustness.
Simulation results in a wide range of the output voltage show that the proposed
control strategy yields very fast time responses even under varying load situations.
Copyright c©2005 IFAC.
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1. INTRODUCTION

Switched mode DC-to-DC power converters are
used in several electric power supply systems,
including vehicles, illumination, control systems,
computers, and others systems. Due to their in-
trinsic nonlinearity these systems represent a chal-
lenging field for control algorithms (Buso, 1999).
Several control strategies have been proposed in
the last years to control these processes. Linear
control techniques are normally based on a small
signal analysis of the process and their perfor-
mances generally depend on the operating point
(Mattavelli, 1997). To overcome this drawback
and to cope with the parameter variation of the
linearized model, a robust controller based on a
µ-synthesis approach is presented in (Buso, 1999).
Nonlinear approaches based on sliding model con-

1 Partially supported by CNPq and CAPES

trol have been proposed in (López, 1999) and
(Shtessel, 2003), both of which use an explicit
mathematical model of the process. This strategy
is simple to implement but the design is com-
plex and specific for each plant. Thus, this paper
presents a different nonlinear approach that uses
a mathematical model of the plant, is easy to tune
and could be used for different topologies without
changes in the controller.

A nonlinear model based predictive controller
(NMBPC) is proposed for the output voltage reg-
ulator of a Buck-Boost converter (BBC). Model
based predictive controllers (MBPC) are widely
used in the process industry and have demon-
strated their potentiality. Although MBPC are
used to control multivariable complex processes,
most of the MBPC used in industry are based on
linear models (Camacho, 1998). When the process
exhibits strong nonlinearities, as is the case of the
BBC, NMBPC must be used if a high closed loop



performance is desired (Chen, 2002). The main
advantage of the NMBPC is the simple way in
which the control law is proposed. Also, simple
and intuitive time domain rules could be used for
tuning the controller (Camacho, 1998) although
it is computationally more demanding than other
linear algorithms. However, with the current com-
puter power available (like Digital Signal Process-
ing based systems) computational complexity is
not a real restriction (De Keyser, 2003).

The NMBPC proposed here is an extension to
nonlinear systems of the well known generalized
predictive controller (GPC) (Camacho, 1998). It
uses a nonlinear prediction of the system outputs
based on a discretization of the average continuous
model of the BBC, assuming the duty cycle as
the controlled variable. A classical quadratic cost
function J is minimized at each sample time using
a SQP optimization algorithm (Boggs, 1996) that
guarantees that the obtained control action gives
a local optimal value of J subject to a set of
predefined constrains in the control action and
plant output.

The paper is organized as follows: section 2
presents the BBC modelling and discretization.
Section 3 presents the proposed NMBPC and
the optimization algorithm. The tuning of the
controller is presented in section 4 together with
some simulation results. The paper ends with the
conclusions.
2. BUCK-BOOST CONVERTER MODELING

Figure 1 shows the circuit of an ideal BBC. The
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Fig. 1. Ideal Buck Boost Converter (BBC).

BBC is a typical DC-to-DC converter normally
used as power supply with adjustable output
voltage (V o) than can be higher or lower than the
supply voltage (V cc). From the control point of
view the objective of this system is to provide an
output that can follow a desired voltage reference
and reject the disturbances caused by the load
variations represented in figure 1 by the resistance
R. To do it, an adequate control strategy must be
defined to actuate in the switch S.

The BBC can operate in two different modes. If
the current in the inductor L is not zero the BBC
operates in the continuous conduction mode. If
not a discontinuous operation mode is considered.

Typically, two BBC models are used in the lit-
erature. The instantaneous model considers all

the dynamic phenomena related to the switch
operation. The average model does not con-
sider the switch dynamics but only the dominant
behavior caused by the other elements of the
circuit, (Middlebrook, 1976), (Kassakian, 1991),
(Vorpérian, 1990).

2.1 The instantaneous model

In order to obtain an instantaneous model of the
BBC, q is defined as a signal that characterizes
the dynamic behavior of the switch:

S :
{

q = 0, if the switch is open
q = 1, if the switch is closed

Thus, two sets of differential equations describe
the behavior of the BBC. If q = 0:

diL
dt

=
1
L

vC (1)

dvC

dt
=

1
C

(−iL − vC

R
) (2)

V0 =−vC (3)

and if q = 1:

diL
dt

=
1
L

Vi (4)

dvC

dt
=− 1

C

vC

R
(5)

V0 =−vC (6)

Combining these two sub-systems the instanta-
neous model of the BBC is obtained:

diL
dt

=
1
L

(qVi + (1− q)vC) (7)

dvC

dt
=− 1

C
(
vC

R
+ (1− q)iL) (8)

V0 =−vC (9)

2.2 The average model

The average model is obtained using the instanta-
neous model and some simplification hypotheses.
Assuming that the switch conmutes at a frequency
that is much higher than the frequencies asso-
ciated to the transfer of energy in the passive
elements of the circuit (R,L, and C) it is possible
to substitute the instantaneous control signal q(t)
by the signal d(t) that gives, at each instant t, the
average value of q(t) in a switching period. Using
this approximation, the model can be represented
by the following set of equations (Borges, 2002):

dîL
dt

=
1
L

(dVi + (1− d)v̂C) (10)

dv̂C

dt
=− 1

C
(
v̂C

R
+ (1− d)îL) (11)

V0 =−v̂C (12)



3. NMBPC OF THE BBC

The proposed NMBPC algorithm consists of ap-
plying a control sequence that minimizes a multi-
stage cost function of the form

J =
N2∑

j=N1

δ(j)[E(y(t + j | t))− w(t + j)]2

+
Nu∑

j=1

λ(j)[4u(t + j − 1)]2 (13)

where E(y(t+j | t)) is the j-step ahead prediction
of the system output on data up to time t, N1

and N2 are the minimum and maximum cost
horizons, Nu is the control horizon, δ(j) and λ(j)
are weighting sequences, and w(t + j) is a future
set-point or reference sequence. The objective
of predictive control is to compute the future
incremental control sequence 4u(t), 4u(t + 1),...
in such a way that the future plant output y(t+j)
is driven close to w(t + j). This is accomplished
by minimizing J , subject to a set of constrains on
the control variable and plant output.

To obtain an appropriate solution for this con-
trol problem two main aspects must be analyzed.
First, a predictor set of equations must be defined
in order to compute the expected future values of
the plant output ŷ(t+j | t) for j = 1, ..., N2. After
that, using the relation between the predictions
and the control actions, the optimization problem
is formulated. These two points are analyzed in
the following sub-section. Finally, an algorithm
that guarantees a local solution of the optimiza-
tion problem should be used. This point is dis-
cussed in sub-section 3.2.

3.1 The NMBPC strategy

The NMBPC uses a prediction of the behavior
of the process to compute the control action. To
compute these predictions it is necessary to define
a discrete model of the plant. Also, a disturbance
signal is normally included in the model. A very
common model of the disturbances is:

p(k) =
e[k]

1− q−1

where e[k] is a white noise signal with zero mean
and the integrator is used to produce an off-set
free steady state control (Camacho, 1998). Thus,
using equations 10, 11, 12 of the average model
and the approximation:

dζ

dt
= f(t) ⇒ ζ[k + 1]− ζ[k]

Ts
= f [k] (14)

that is valid if the sample period Ts is adequately
chosen, the following discrete model can be ob-
tained for the plant and disturbances:

îL[k] =
Ts

L
(d[k − 1]Vi + (1− d[k − 1])

v̂C [k − 1]) + îL[k − 1] +
e[k]

1− q−1
(15)

v̂C [k] =−Ts

C
(
v̂C [k − 1]

R
+ (1− d[k − 1])

îL[k − 1]) + v̂C [k − 1] +
e[k]

1− q−1
(16)

V o[k] =−v̂C [k] (17)

Thus assuming that the best expected value
for the future errors e[k + i] is zero,i ≥ 0, the
predictions of îL and v̂C can be computed using:

E(iL[k]) =
Ts

L
[(d[k − 1]− d[k − 2])Vi

+(1− d[k − 1])(v̂C [k − 1]− v̂C [k − 2])]

+2îL[k − 1]− îL[k − 2] (18)

E(vC [k]) =−Ts

C
(
v̂C [k − 1]− v̂C [k − 2]

R

+(1− d[k − 1])(îL[k − 1]− îL[k − 1]))

+2v̂C [k − 1]− v̂C [k − 2] (19)

E(V o[k]) =−v̂C [k] (20)

In the cost function the weighting factors are
considered constant along the horizons (δ(j) = δ,
λ(j) = λ) and as the controlled system is SISO,
only λ will be used as a tuning parameter.

3.2 The optimization procedure

Sequential quadratic programming (SQP) is a
framework for designing effective algorithms for
nonlinearly constrained programming. SQP is a
practical method that can tackle small or large
and convex or nonconvex problems. It produces
a series of iterates by solving quadratic subprob-
lem approximations that converges from remote
starting points to locally optimal solutions of
nonconvex problems (global convergence) and, in
the vicinity of an attractor, its speed of conver-
gence approaches the quadratic convergence rate
of Newton’s method (local convergence). Take the
general nonlinearly constraint optimization prob-
lem:

P : Minimize f(x)
x ∈ Rn

Subject to: cj(x) = 0, j ∈ E
cj(x) ≥ 0, j ∈ I

where f : Rn → R and cj : Rn → R are
smooth functions, and I and E are two finite
sets of indices. SQP is more of a framework
for algorithm design than an algorithm, leaving
a number of parameters to be chosen by the
users to best tackle the problem at hand. In
what follows we describe the principles of the
method near to a local solution (when the starting



point is within a basin of attraction) and far
from it. To keep the presentation manageable,
we favor a somewhat informal description of the
SQP method—the interested reader can refer to
the technical literature for a rigorous treatment
(Boggs, 1996).

3.3 Local Method

Given an initial guess (x0, λ0) for the solution
and Lagrangian multiplier obtained as a hot start
from preceding solutions, or otherwise arbitrary
vectors, SQP generates a sequence {(xk, λk)}∞k=0

of improving iterates. To improve the current
iterate (xk, λk), the method solves a quadratic
approximation of P :

Pk : Minimize mk(pk) =
1
2
pT

k Wkpk +∇fT
k pk

pk

Subject to: ∇cj(x)T pk + cj(xk) = 0, j ∈ E
∇cj(x)T pk + cj(xk) ≥ 0, j ∈ I

where Wk is the Hessian of the Lagrangian
function at the current iterate. More precisely,
L(x, λ) = f(x) − ∑

j∈E∪I λjcj(x) is the La-
grangian, W (x, λ) = ∇2

xxL(x, λ) is the La-
grangian’s Hessian, and Wk = W (xk, λk) is the
Hessian matrix evaluated at the current iterate.
For each k = 0, 1, . . ., the local SQP method
begins by evaluating fk = f(xk), ∇fk = ∇f(xk),
Wk = W (xk, λk), cj(xk) and ∇cj(xk) for all
j ∈ I ∪ E . It then solves Pk to yield steps pk

and µk for the current solution and Lagrangian
multiplier, respectively, obtaining the next iterate
(xk+1, λk+1) = (xk +pk, λk +µk). If a convergence
criterion is satisfied, such as the minimum step
‖(pk, µk)‖ < ε, the algorithm terminates, or else
it continues iterating from (xk+1, λk+1). Notice
that the objective function of Pk is not a Taylor’s
series approximation of f , but rather a quadratic
approximation of the Lagrangian L(x, λ) that cap-
tures the curvature of the constraints. This choice
is not incidental. It gives rise to a nice interpreta-
tion of SQP iterates that explains its fast conver-
gence near local minima. Suppose that P is devoid
of inequalities, I = ∅. Then the SQP method
becomes equivalent to Newton’s method applied
to the first-order conditions, ∇L(x, λ) = 0, which
consists in solving a system of linear equations:
[

Wk −AT
k

Ak 0

] [
pk

µk

]
=

[−∇f(xk) + AT
k λk

−c(xk)

]
(21)

where c = [cj : j ∈ E ] is the constraint vector
function and Ak = ∇c(xk) is the Jacobian matrix
of the constraints evaluated at the current iterate.
Assuming that (xk, λk) is sufficiently close to a
locally optimal pair (x∗, λ∗) and Wk is positive
definite in the null space of Ak, then Pk is a convex

quadratic problem that has a unique solution-
Lagrangian multiplier (pk, µk). This pair is pre-
cisely the solution to the linear system (21). Thus,
at least locally, the SQP method defines not only
a good step from xk to a local solution x∗, but
also a good step from λk towards the optimal
Lagrangian multiplier λ∗. The advantage of the
SQP framework over the application of Newton’s
method to solve the first-order optimality condi-
tions is twofold. First, the SQP framework pro-
vides a tool for modifying the step if the current
iterate is not close to (x∗, λ∗). Second, it can
be more effectively extended to tackle inequality-
constrained problems.

When the current iterate is sufficiently near to
(x∗, λ∗), the SQP method identifies the optimal
active set A(x∗) = E ∪ {j ∈ I : cj(x∗) = 0} for
P and, from thereon, it behaves as if there were
only equality constraints. Let cA(x∗) = [cj(x∗) :
j ∈ A(x∗)] be the vector function with only ac-
tive constraints and ∇cA(x∗) be the correspond-
ing Jacobian. Suppose that ∇cA(x∗) has full row
rank, that dT W (x∗, λ∗)d > 0 for all d 6= 0 such
that∇cA(x∗)d = 0 2 , that strictly complementary
holds, and that the current iterate (xk, λk) is suffi-
ciently close to (x∗, λ∗). Then, there is a local solu-
tion x̂ to the quadratic approximation Pk whose
active set A(x̂) is identical to the active A(x∗)
of the nonlinear problem P (Nocedal, 1999). As
the iterates draw closer to a local minimizer sat-
isfying the conditions just stated, the active set
remains fixed and subproblem Pk behaves as if
there were no inequality constraints—the inequal-
ity constraints not appearing in A(x∗) are dis-
carded. Hence, local convergence is also ensured
for inequality-constrained problems.

3.4 Global Methods

For SQP to be practical, convergence should be
ensured for nonconvex problems and from remote
starting points. The globally convergent version
of SQP behaves much like trust-region methods.
In short, if Wk is positive definite on the tangent
space of the active constraints, then mk is convex
implying that Pk has a unique solution and the
Newton’s step (pk, µk) is well defined. On the
other hand, if Wk is not positive definite, a number
of alternatives can be implemented to promote
progress towards a minimizer: linear search meth-
ods replace it by a positive definite matrix Bk;
quasi-Newton methods use matrix factorization to
obtain a positive definite Bk; and other methods
replace Wk with the Hessian of an augmented
Lagrangian having convexity properties. Alone,
these techniques are not sufficient to guarantee
convergence from distant starting points. A merit

2 In other words, W (x∗, λ∗) is positive definite on the
space tangent to the active constraints



function φ is typically used to control the length of
steps in line search methods or to determine how
the size of a trust-region should be adjusted in
trust-region methods. In essence, a merit function
combines constraint infeasibility and the objective
value of an iterate so that a descent direction
for this function means progress towards a local
solution. For equality-constrained problems, two
merit functions are the l1 merit function

φ1(x;µ) = f(x) +
1
µ
‖c(x)‖1

where µ > 0, and Fletcher’s augmented La-
grangian merit function, which is defined by

φF (x; µ) = f(x) + θ(x)T c(x) +
1
2µ
‖c(x)‖22

where θ(x) = [∇c(x)∇c(x)T ]−1∇c(x)∇f(x). From
the above discussion, it becomes clear that the
SPQ method can be implemented in a number
of ways. A practical implementation of SQP uses
line search and quasi-Newton approximation of
the Hessian matrix. Below we describe the steps
of a general SQP algorithm (Nocedal, 1999) for
solving the nonlinearly constrained problem P .

SQP Algorithm

• Choose parameters η ∈ (0, 1/2) and τ ∈ (0, 1)
• Choose a starting iterate (x0, λ0)
• Let B0 ∈ Rn×n be a symmetric positive

definite matrix (initial Hessian)
• k = 0
• Compute fk = f(xk), ∇fk = ∇f(xk),

ck = c(xk), and Ak = ∇c(xk)
• For k = 0, 1, . . . , maxk

− If the KKT conditions are satisfied stop
− Solve Pk to obtain a search direction pk

− Find step µk that renders pk a descent
direction for φ at xk

− αk ← 1
− While φ(xk + αkpk; µk) >

φ(xk;µk) + ηαkDφ(xk; pk) do
αk ← τ ′αk for τ ′ ∈ (0, τ)

end-while
− xk+1 = xk + αkpk

− Evaluate fk+1, ∇fk+1, ck+1, Ak+1

− Obtain λk+1 by solving the linear system
[Ak+1A

T
k+1]λk+1 = −Ak+1∇fk+1

− Calculate sk = αkpk and
yk = ∇xL(xk+1, λk+1)−∇xL(xk, λk)

− Obtain Bk+1 using a quasi-Newton formula
end-for

The operator Dφ(x, p) corresponds to the direc-
tional derivative of function φ in the direction
given by p. Algorithms to compute Hessian ap-
proximations are fully described in (Dennis, 1977).
For the numerical analysis reported in this paper,

Element Value

Input voltage (Vi) 48V
Inductance (H) 1.4 ∗ 10−3Hy
Capacitor (C) 10 ∗ 10−6F
Resistance (min. value) (Rmin) 40Ω
Resistance (max. value) (Rmax) 120Ω
Output voltage (min. value) (VoMin) 12V
Output voltage (max. value) (VoMax) 100V
Switching frequency (T ) 50KHz
Sampling Period (Ts) 0.1mseg

Table 1. BBC parameters.

the SQP algorithm followed the above main steps
and was implemented using CFSQP (Lawrence,
1996).

4. SIMULATION RESULTS

The simulation tests were performed using a BBC
model with the parameters given in table 1.
The proposed control algorithm was implemented
in C programming language, while the process
simulation is executed in the language Ecosim
(Ecosim Pro, 2004). For the simulations, the in-
stantaneous model of the BBC is used, whose a
dynamic behavior satisfactorily approximates the
real plant (Borges, 2002).

The tuning of the horizons and λ is made in
order to obtain a good compromise between per-
formance and robustness in the wide range of
operation of the BBC, even when high changes in
the load are considered. Note that this are the only
parameters that must be tuned in the controller.

The first test shows the step reference following
properties of the closed loop system. Using nom-
inal load (R = 80Ω), the reference was changed
from 0V to 12V at t = 0, from 12V to 100V
at t = 5ms and finally from 100V to 56V at
t = 10ms. After that, maintaining the output
voltage in its nominal value 56V , step changes in
the load were introduced. At t = 15ms R changes
from 80Ω to 40Ω and at t = 20ms R changes
from 40Ω to 120Ω. Figure 2 show the reference
and the voltage output while figures 3 and 4 shows
respectively the inductor current and the control
action.

As can be seen in the figures the closed loop
performance of the system presents and overshoot
less than 10% and a settling time less than 2ms
in all the simulated situations when changes in
the set point of the BBC were introduced. The
same dynamics properties can be observed in the
disturbance rejection response when step changes
in the load were considered.

5. CONCLUSIONS

This paper presented the application of a NMBPC
to a BBC. The controller performs well both for
set point changes and disturbance rejection. The
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major advantages of the use of a predictive ap-
proach are: (i) that the controller can be used with
any BBC without modifications in the control
structure, as only the parameters Vi, R, L and C
must be modified in the algorithm when a new
application is desired; (ii) the input and output
constrains could be considered in the control law;
(iii) a good compromise between robustness and
performance could be obtained using an adequate
tuning of the horizons and weighting factor.
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