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Abstract: We address the problem of adaptive observer design for nonlinear time-varying
systems which can be transformed in the so-called output feedback form (linear in the
unmeasured variables). The observer design follows up previous work on adaptive observers
for linear systems and has the form of the classical Luenberger observers for linear systems
except that the observer gain is time-varying. A specific form of persistency of excitation
is imposed to guarantee the convergence of the (state and parameter) estimation errors.
As for the output feedback loop, we proceed using a cascade approach, i.e., we impose the
appropriate conditions so that the closed loop system has a cascaded structure. Uniform
global asymptotic stability may then be concluded based on cascaded systems theory.
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1 Introduction

We address the problem of adaptive observer-
based output feedback for (certain) nonlinear
time-varying systems. We restrict our attention
to control problems leading to nonlinear time-
varying systems (e.g. non-autonomous stabiliza-
tion and tracking) that may be transformed into
the so-called output feedback form. See for in-
stance (Besançon et al. 1998) and some of the ref-
erences in (Nijmeijer and eds. 1999). Besides ob-
server design, we consider the problem of param-
eter identification under the assumption that pa-
rameters also appear linearly in the model. Such
problem has been studied exhaustively for linear
systems and for many classes of nonlinear sys-
tems (see e.g. (Marino and Tomei 1993, Krstić
et al. 1995) and references therein). Thus, we are
concerned with the problem of adaptive observer
design and output feedback control.
Even though the condition of linearity in the un-
measured states is restrictive, it has been exten-
sively used earlier (cf. (Marino and Tomei 1993,

Krstić et al. 1995)). In more recent references, this
condition is relaxed, for instance, via high gain
observers; see (Praly and Jiang 2004) and some
of the references therein, allowing for partially-
ISS systems in triangular form. Other works, as
(Arcak and Kokotović 2001, Aamo et al. 2000),
address systems with sector nonlinearities and/or
globally Lipschitz functions of the unmeasured
variables (e.g. (Praly 2003)).
The results that we present here are inspired
from (Zhang 2002) and follow up (Besançon et
al. 1996, Besançon and de L. Morales 2003, Loŕıa
and de León Morales 2003). As in the latter ref-
erence, we study the problem of output feedback
observer-based control problem from a cascades
view-point: we see the closed-loop system as a
cascade of two inner loops. The first is given by
the plant dynamics with the adaptive observer
and the second, by the plant with a state feed-
back controller, interconnected by nonlinearities
generated by the implementation of the certainty
equivalence controller. Even though we assume
that the system is transformable into the output



form, it shall be apparent that, as in (Loŕıa and
de León Morales 2003) our results apply to sys-
tems with globally Lipschitz nonlinearities.
Notation. We say that a function φ : R≥0×Rn →
A with A a closed, not necessarily compact set,
satisfies the basic regularity assumption (BRA)
if φ(t, ·) is locally Lipschitz and φ(·, x) is mea-
surable. We denote the usual Euclidean norm
of vectors by |·| and use the same symbol for
the matrix induced norm. A continuous function
α : R≥0 → R≥0 is said to be of class K (α ∈ K),
if it is continuous, strictly increasing and zero at
zero; α ∈ K∞ if, in addition, it is unbounded. A
function β : R≥0 × R≥0 → R≥0 is of class KL
if β(·, t) is nondecreasing, β(s, ·) is non-increasing
and lims→0+ β(s, t) = limt→∞ β(s, t) = 0. We de-
note the solution of a differential equation ẋ =
f(t, x) starting at x◦ at time t◦ by x(·, t◦, x◦).
We say that such a system described is forward
complete if all the solutions starting at t◦ ≥ 0,
x◦ = x(t◦, t◦, x◦) exist for each t ≥ t◦.

Definition 1 (Uniform global stability) The origin
of

ẋ = f(t, x) (1)

where f(·, ·) satisfies the BRA, is said to be uni-
formly globally stable (UGS) if there exists γ ∈
K∞ such that, for each (t◦, x◦) ∈ R≥0 × Rn, each
solution x(·, t◦, x◦) of (1) satisfies

|x(t, t◦, x◦)| ≤ γ(|x◦|) ∀ t ≥ t◦ . (2)

Definition 2 (Uniform global asymptotic stability)
The origin of (1) is said to be uniformly globally
asymptotically stable (UGAS) if it is UGS and
uniformly globally attractive, i.e., for each pair of
strictly positive real numbers (r, σ), there exists
T > 0 such that for each solution

‖x◦‖ ≤ r =⇒ ‖x(t, t◦, x◦)‖ ≤ σ ∀ t ≥ t◦ + T .

We also need to study the behavior of nonlinear
time-varying systems whose dynamics depend on
a parameter λ, taken from a closed, not necessarily
compact set D. That is, systems of the form

ẋ = f(t, λ, x) (3)

where f(·, λ, ·) satisfies the BRA, and f(t, ·, x) is
continuous.

Definition 3 The origin of the system ẋ =
f(t, λ, x) is said to be λ-uniformly globally asymp-
totically stable (λ-UGAS) if all the conditions of
Definition 2 are met with T and γ(·) independent
of λ.

Definition 4 (λ-UGES) The origin of the system
ẋ = f(t, λ, x) is said to be λ-uniformly globally
exponentially stable (λ-UGES) if there exist two

constants k and γ > 0 such that, for all t ≥ t◦ ≥ 0,
all x◦ ∈ Rn and all λ ∈ D,

|x(t, λ, t◦, x◦)| ≤ k |x◦| e−γ(t−t◦) . (4)

Such definition is useful, for instance, when study-
ing stability of nonlinear (possibly time-varying)
systems by regarding them as linear time-varying,
along trajectories. For the sake of illustration,
consider the system ẋ = −x3 with initial condi-
tions (t◦, x◦) and the linear time-varying param-
eterized system ż = −a(t, λ)z with initial condi-
tions (τ◦, z◦) = (t◦, x◦) and a(t, λ) := x(t, t◦, x◦)2

i.e., λ := (t◦, x◦). Since the trajectories of both
systems coincide we can establish the stability of
ẋ = −x3 via conditions imposed on a(t, λ). The
advantage of this approach is to analyze a linear
system instead of a nonlinear one; however, the
price paid for such analysis is to impose condi-
tions along the trajectories of the nonlinear sys-
tem. While such technique may appear surpris-
ing at first sight it has been used in numerous
publications (see e.g. (Khalil 1996a, Ortega and
Fradkov 1993, Janković 1996, Khalil 1996b, Loŕıa
et al. 2002a). In particular, in (Loŕıa and Panteley
2002) we established rigorous conditions for stabil-
ity of parameterized linear time-varying systems,
that serve in the analysis of model-reference adap-
tive control schemes (MRAC). Such results apply,
for instance, to the systems considered in the pre-
viously cited references.
The observer design and stability analysis carried
out in this paper follows this approach. The con-
ditions that we impose take the form of a specific
property of so-called persistency of excitation in-
troduced in (Loŕıa and Panteley 2002) for param-
eterized systems and that we remind here for con-
venience.

Definition 5 (λ-uniform persistency of excitation)
Let the function φ : R≥0×D → Rn×m, be continu-
ous. We say that φ(·, ·) is λ-uniformly persistently
exciting (λ-uPE) if there exist two parameters µ
and T > 0 such that, for all λ ∈ D,

∫ t+T

t

φ(τ, λ)φ(τ, λ)>dτ ≥ µI ∀ t ≥ 0 . (5)

2 Main results

2.1 Basic assumptions

We consider the problem of observer design and
adaptive output feedback control for nonlinear
time-varying systems of the form

ẋ = fx(t, x, θ) + gx(t, x, θ)u (6a)
y = C(t)x , (6b)

where θ ∈ Rm denotes a vector of unknown con-
stant parameters, fx(·, ·, θ), gx(·, ·, θ) satisfy the



BRA for all θ ∈ Θ ⊂ Rm, g is uniformly bounded
in t ≥ 0 for all θ ∈ Θ, and C(·) is continuous
and bounded. We make the standing assumptions
that:
1) there exists a state feedback control law u =
k(t, x, θ), uniformly bounded in t ≥ 0 for all θ ∈ Θ,
such that the closed loop system

ẋ = fx(t, x, θ) + gx(t, x, θ)k(t, x, θ) (7)

is UGAS;
2) there exists a map Π : R≥0 × Rn → Rn such
that, defining

ξ := Π(t, x) ,

the system (6) is transformable into

ξ̇ = Aξ(t, u, y)ξ + Bξ(t, u, y) + Ψ(t, u, y)θ(8a)
y = C(t)ξ (8b)

where Aξ, Bξ and Ψ are continuous bounded func-
tions from R≥0 × Rp × Rm to Rn. On occasions,
to compact the notation we may also write Aξ

instead of Aξ(t, u, y) and similarly for other vari-
ables.

2.2 Observer design

The observer design is based on (Hammouri
and de León Morales 1991, Besançon and
de L. Morales 2003, Loŕıa and de León Morales
2003) and is inspired by (Zhang 2002). Essentially,
as in (Loŕıa and de León Morales 2003), it consists
in constructing an observer for (8) with a time-
varying gain having the fundamental property of
persistency of excitation (see e.g. (Narendra and
Annaswamy 1989) or (Sastry and Bodson 1989)
for a definition), which guarantees exponential
convergence of the estimation error. The choice
of such a gain follows (Hammouri and de León
Morales 1991, Besançon and de L. Morales 2003).
Let us define the extended state of system (8) to-
gether with θ̇ = 0, its estimate and the respective
estimation error as

ζ :=
(

ξ
θ

)
, ζ̂ :=

(
ξ̂

θ̂

)
, and ζ := ζ̂ − ζ .

Then, the estimation goal is to define an observer1

for the system

ζ̇ = Aζ(t, u, y)ζ + Bζ(t, u, y) . (9)

where

Aζ(t, u, y) :=
(

Aξ(t, u, y) Ψ(t, u, y)
0 0

)
,

Bζ(t, u, y) :=
(

Bξ(t, u, y)
0

)
,

Cζ(t) :=
(

C(t) 0
)

,

such that ζ tends to 0 exponentially. Let such
observer take the form

˙̂
ζ = Aζ ζ̂ + Bζ − LζCζζ , (10)

where the estimation gain

Lζ(t, u, y) :=
(

Lξ(t, u, y)
Lθ(t, u, y)

)

is to be defined so that the estimation error dy-
namics,

ζ̇ =
(
Aζ(t, u, y)− Lζ(t, u, y)Cζ(t)

)
ζ , (11)

obtained from subtracting (9) to (10), is uniformly
exponentially stable. We stress that, here, “uni-
formly” refers to the initial conditions (t◦, ζ◦) and
the input and output trajectories u(t, ζ̂(t, t◦, ζ̂◦))
and C(t)x(t, t◦, x◦), which depend in their turn,
on the initial conditions of the overall control
system. To avoid cumbersome notation and for
further analysis, we define λ := [t◦, ζ̂◦, x◦] be-
longing to D := R≥0 × Rn+m × Rn and the
signals ũ(t, λ) := u(t, ζ̂(t, t◦, ζ̂◦)) and ỹ(t, λ) :=
C(t)x(t, t◦, x◦). Then, following the discussion
from Section 1, we shall analyse the stability of
the nonlinear system (11) by analysing the linear
time-varying differential equation

ζ̇ =
(
Ãζ(t, λ)− L̃ζ(t, λ)Cζ(t)

)
ζ , (12)

where we also defined

Ãζ(t, λ) := Aζ(t, ũ(t, λ), ỹ(t, λ))

L̃ζ(t, λ) := L̃ζ(t, ũ(t, λ), ỹ(t, λ)) .

Similarly, we define

Ψ̃(t, λ) := Ψ(t, ũ(t, λ), ỹ(t, λ)) .

We are ready to present our PE observer. For the
sake of well-posedness, we assume for the time-
being, that the system is forward complete uni-
formly in λ; in particular, all the functions in-
volved in the definition of Ãξ, L̃ξ exist for all
t ≥ t◦, all t◦ ≥ 0 and all λ ∈ D.

Proposition 1 For any λ ∈ D, let the estimation
gain be given by

L̃ζ :=

(
ΛP−1

θ Λ>C> + P−1
x C>

P−1
θ Λ>C>

)
,

Λ, Px, Pθ being n× n-matrices, solutions of
{

Λ̇ =
(
Ãξ − P−1

x C>C
)
Λ + Ψ̃

Λ(t◦, λ) = Λ◦
(13)

{
Ṗx = −ρxPx − Ã>ξ Px − PxÃξ + C>C

Px(t, λ) = Px◦ > 0 ∀ t ∈ [t◦, Tx]
(14)

{
Ṗθ = −ρθPθ + Λ>C>CΛ
Pθ(t◦, λ) = Pθ◦ > 0 ∀ t ∈ [t◦, Tθ] .

(15)

where ρx and ρθ are positive numbers and Tx, Tθ

are defined below.
1With an abuse of terminology we include in the word “observer” the adaptive estimation law for θ.



Assumption 1 Let Φξ(t, t◦, λ) denote the transi-
tion matrix associated to Ãξ(t, λ), i.e., the solu-
tion of

{
Φ̇ξ(t, t◦, λ) = Ãξ(t, λ)Φξ(t, t◦, λ) ,

Φξ(t◦, t◦, λ) = I .

We assume that there exist some positive numbers
Tx, µx, Tθ and µθ such that, for all t ≥ 0 and all
λ ∈ D,

∫ t+Tx

t

Φξ(τ, t, λ)>C(τ)>C(τ)Φξ(τ, t, λ)dτ ≥ µx

∫ t+Tθ

t

Λ(τ, λ)>C(τ)>C(τ)Λ(τ, λ)dτ ≥ µθ .

Under these assumptions the origin of the esti-
mation error dynamics given by (12) is λ-UGES
and, consequently, the origin of the system (11) is
UGES. ¤

The choice of the estimation gains as well as the
λ-PE conditions imposed in Assumption 1 en-
sure that the estimation error dynamics is ex-
cited in the sense of Definition 5. In (Loŕıa and
de León Morales 2003) it is imposed that the ma-
trix Q :=

[
(Ãζ − LζCζ)>Pζ + Pζ(Ãζ − LζCζ)

]
+

Ṗζ is PE along the output trajectories, here de-
noted by ỹ(t, λ). The conditions imposed above
guarantee that Q is actually positive definite —
cf. the proof of Proposition 1. It shall be clear
from previous discussions on parameterized sys-
tems, that the conditions imposed (as well as
e.g. in (Khalil 1996b, Janković 1996, Ortega and
Fradkov 1993, Loŕıa and de León Morales 2003))
are required to hold along trajectories. How-
ever, notice that as it is shown in (Loŕıa and
Panteley 2002), at least for the exponential stabil-
ity of the origin of (12), the imposed PE properties
are also necessary. An interesting open question
is whether one can relax the λ-PE assumptions to
a form of PE independent of the trajectories (e.g.
in the spirit of (Loŕıa et al. 2002b)), to conclude
UGAS.
Proof of Proposition 1. We provide here the main
steps of the proof, which follows a standard Lya-
punov analysis. Detailed computations and inter-
mediary steps are provided in the appendix. Con-
sidering that the system is forward complete, let

Vζ(t, ζ, λ) := ζ
>

Pζ(t, λ)ζ , (16)

where

Pζ :=
(

Px −PxΛ
−Λ>Px Pθ + Λ>PxΛ

)
. (17)

Claim 1 Define T := max{Tθ, Tx}. Then, there
exist positive numbers α1 and α2 such that for
any ζ ∈ Rn+m, t ≥ T and λ ∈ D, the function
Vζ(t, ζ, λ) defined in (16) satisfies

α1

∣∣ζ∣∣2 ≤ Vζ(t, ζ, λ) ≤ α2

∣∣ζ∣∣2 . (18)

Proof . See Appendix2 A. 4
Long but straight-forward computations show
that the total derivative of V̇ζ(t, ζ, λ) along the
trajectories of (12) satisfies V̇ = ζ

>
Qζ where

Q :=
( −ρxPx − C>C ρxPxΛ

ρxΛ>Px −ρθPθ − ρxΛ>PxΛ

)
.

So defining ρ := min{ρx ; ρθ} it follows, from (16)
and (17), that for all t ≥ T , ζ ∈ Rn+m and all
λ ∈ D,

V̇ζ(t, ζ, λ) ≤ −ρVζ(t, ζ, λ) . (19)

This inequality together with (18) imply that
∣∣ζ(t)

∣∣ ≤ α2

α1

∣∣ζ◦
∣∣ e−ρ(t−t◦) (20)

for all t◦ ≥ T and all t ≥ t◦. For any t◦ < T and
all t ∈ [t◦, T ] we have, from forward completeness
(uniformly in λ), that there exist c1, c2 > 0 inde-
pendent of λ, such that3

∣∣ζ(t)
∣∣ ≤ c1

∣∣ζ◦
∣∣ ec2(t−T ).

From this and (20) we conclude that the origin of
(12) is λ-UGES. ¥

2.3 Output feedback control

We follow a cascades approach to output feed-
back control, that is, we design the controller so
that the overall closed loop system has a cascaded
structure formed, on one hand, by the plant in
closed loop with a state feedback controller and,
on the other hand, by the estimation error dynam-
ics.
To that end, consider again system (6) in closed
loop with u = k(t, x̂, θ̂), x̂ = Π−1(t, ξ̂) and the
observer (10) that is,

ẋ = f(t, x, θ) + g(t, x, θ)k(t, x, θ)
+ g(t, x, θ)[k(t, x̂, θ̂)− k(t, x, θ)] .

(21)

Define x̄ := x− x̂, and

F (t, x, θ) := f(t, x, θ) + g(t, x, θ)k(t, x, θ)
ᾱ(t, x, θ, x̄, θ̄) := k(t, x̄ + x, θ̄ + θ)− k(t, x, θ) .

Then, equation (21) becomes

ẋ = F (t, x, θ) + g(t, x, θ)ᾱ(t, x, θ, x̄, θ̄) (22)

where the states x̄ and θ̄ are generated by the es-
timation error dynamics (11) and Π−1(t, ξ̄).
Next, to exhibit the cascaded structure of the
overall closed loop system let us introduce χ :=

2An explicit expression of a convenient α1 is also given in Appendix A.
3This may be established integrating V̇ζ ≤ Vζ , using the comparison theorem and (18).



col[χ1, χ2] with χ1 := x and χ2 := ζ, Fχ(t, χ1) :=
F (t, x, θ), Gχ(t, χ) := g(t, x, θ)ᾱ(t, x, θ, x̄, θ̄) and
Hχ(t, χ2, λ) := Aζ(t, λ)−L̃ζ(t, λ)C(t)ζ. Then, the
closed loop system can be written as

χ̇1 = Fχ(t, χ1) + G(t, χ) (23a)
χ̇2 = Hχ(t, χ2, λ) . (23b)

Under the conditions of Proposition 1, x̄(t) and
θ̄(t) (hence χ2(t) ) tend to zero exponentially fast.
More precisely, the origin, χ2 = 0, of (23b) is λ-
UGES. By assumption, the origin of ẋ = F (t, x, θ)
is UGAS hence, so is the origin of χ̇1 = Fχ(t, χ1).
We also have, under the standing regularity as-
sumptions on the system’s dynamics and the con-
trol function k(·, ·, ·) and the interconnection term
g(·, ·, ·), that for each r > 0 there exists a contin-
uous non decreasing function αr such that, for all
t ≥ t◦ ≥ 0 and all |χ2| ≤ r,

|G(t, χ(t))| ≤ αr(|χ1(t)|) .

Finally, we remark that by construction,
ᾱ(t, x, θ, 0, 0) ≡ 0 hence, G(t, χ) ≡ 0 if χ2 = 0.
Following these observations, the following result
holds.

Theorem 1 Consider the system (6) in closed loop
with k(t, x̂, θ̂) and the estimator from Proposition
1 under the following assumptions.

Assumption 2 For the system (7) assume that
there exist: a Lyapunov function Vx(t, x, θ), a pos-
itive semidefinite function W (·), class K∞ func-
tions α4, α5 and a class K function α6 such that

α4(|x|) ≤ Vx(t, x, θ) ≤ α5(|x|)
V̇x(7)(t, x, θ) ≤ −W (x)∣∣∣∣
∂Vx

∂x
(t, x, θ)

∣∣∣∣ ≤ α6(|x|) .

Moreover, for any r the functions α5 and αr are
such that

∫ ∞

0

ds

α5 ◦ α−1
4 (s)αr ◦ α−1

4 (s)
= ∞ . (24)

Assumption 3 (growth of Fχ and Gχ) There exist
numbers q ≥ 0, c1, c2 > 0 such that, for all
θ ∈ Rm,

|k(t, x, θ)|
|z|q ≥ c1, ∀ |x| ≥ c2 , t ≥ 0 ,

Under these conditions, the origin of the closed
loop system is UGAS. ¤

Sketch of proof . Assumption 2 implies forward
completeness: let tmax < ∞ be such that [t◦, tmax)
is the maximal interval of definition for the solu-
tions ζ(t) and x(t). On this interval we have that

Ãζ(·, λ), L̃(·, λ) and C(·) are uniformly bounded
for all λ ∈ D. Also, Vζ(t, ζ, λ) is well defined
and satisfies (18) for all t ∈ [t◦, tmax), λ ∈ D and
ζ ∈ Rn+m. Further, define v(t, λ) := Vζ(t, ζ(t), λ).
It follows from (19) that v̇(t, λ) ≤ v(t, λ) for all
t ∈ [t◦, tmax) and λ ∈ D. Integrating the latter
and using (18) once more, we obtain that there ex-
ists cζ ∈ K∞ such that

∣∣ζ(t)
∣∣ ≤ cζ(

∣∣ζ◦
∣∣). Clearly,

such reasoning holds for any finite tmax. Con-
sider next the function Vx(t, x, θ) from Assump-
tion 2. Let r := cζ(

∣∣ζ◦
∣∣). Define vx(t, λ, θ) :=

Vx(t, x(t), θ); its time derivative along the trajec-
tories of (23a) satisfies, for all t ∈ [t◦, tmax), λ ∈ D
and θ ∈ Rm, v̇x(t, λ, θ) ≤ α6 ◦ α−1

4 (vx(t, λ, θ))αr ◦
α−1

4 (vx(t, λ, θ)). Integrating on both sides from t◦
to tmax and using the fact that lim

t→tmax
vx(t, λ, θ) =

∞ (uniformly for all λ and θ) we obtain that
∫ ∞

vx(t◦,λ,θ)

dvx

α5 ◦ α−1
4 (vx)αr ◦ α−1

4 (vx)
= t−tmax < ∞ ,

which contradicts (24), hence tmax = ∞.
The rest of the proof follows along the lines of the
proof of (Loŕıa and de León Morales 2003, Theo-
rem 3), invoking (Panteley and Loŕıa 2001, Theo-
rem 2) and observing that Assumption 3 implies
that the growth rate of Fχ(t, ·) is similar to that
of G(t, ·), as function of χ1 (i.e., for each fixed t
and χ2). ¥

3 Conclusion

We have addressed the problem of adaptive ob-
server design and output feedback control for non-
linear time-varying systems. We have established
that, under certain persistency of excitation con-
ditions, uniform global asymptotic stability may
be obtained. Such conditions are imposed along
the output trajectories of the system. Undergoing
further research is focussed on relaxing such con-
dition for a property of persistency of excitation,
independent of the trajectories.
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Loŕıa A., E. Panteley and K. Melhem (2002a).
UGAS of “skew-symmetric” time-varying
systems: application to stabilization of
chained form systems. European J. of Contr.
8(1), 33–43.
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A Proof of Claim 1

It is sufficient to establish that all the functions
involved in the definition of Pζ are uniformly
bounded and that Pζ is positive definite for all t ≥
T and λ ∈ D. The former follows from the defini-
tions of Px, Pθ and the assumption that Aξ(t, u, y)
and B(t, u, y) are uniformly bounded hence, the
existence of α2. The latter can be shown com-
puting the Schur complement of Pζ , that is, Pζ is
positive definite if, for all t ≥ 0 and λ ∈ D, Px(t, λ)
is positive definite and Pθ(t, λ) + Λ>Px(t, λ)Λ >
Λ>Px(t, λ)Px(t, λ)−1Px(t, λ)Λ. Notice that both
of these conditions are fulfilled if Pθ(t, λ) and
Pθ(t, λ) are positive definite for all t ≥ 0 and
λ ∈ D.
Expression of α1. Recall that T := max{Tx;Tθ}.
It can be shown, by integrating (14) and (15), that

Pθ(t, λ) > µθe
−ρθTθI ∀t ≥ Tθ, λ ∈ D . (25)

and
Px(t, λ) ≥ µxe−ρxTxI , (26)

for all t ≥ Tx and all λ ∈ D. From (17), (25) and
(26) we have that, for all t ≥ T and all λ ∈ D,

Pζ(t, λ) ≥
(

µx

2 e−ρxTxI 0
0 µθ

2 e−ρθTθI

)

+
(

1
2Px −PxΛ

−Λ>Px
1
2Pθ + Λ>PxΛ

)
.

Computing the Schur complement, for the second
matrix, we obtain that it is positive definite if

1
2
Px > 0 and

1
2
Pθ + Λ>PxΛ > Λ>PxP−1

x PxΛ ,

which is equivalent to the positiveness of Px and
Pθ. Hence, for any t ≥ T and λ ∈ D,

Pζ(t, λ) ≥
(

µx

2 e−ρxTxI 0
0 µθ

2 e−ρθTθI

)
≥ α1I ,

(27)
where

α1 :=
1
2

min{µxe−ρxTx ;µθe
−ρθTθ} .


