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Abstract: The objective of this contribution is input design for accurate identification of
non-minimum phase zeros in linear systems. Recently, several variance results regarding
estimation of non-minimum phase zeros have been presented. Based on these results, we
will show how to design the input that has the least energy content required to keep the
variance of an estimated zero below a certain limit. Both analytical and numerical results
are presented. A striking fact of the analytical results is that the variance of an estimated
zero is independent of the model order when the optimal input is applied.
We will also quantify the benefits of using the optimal design compared to using a white
input signal or a square-wave. Robustness issues will also be covered in this presentation.
The optimal design depends on the location of the true unknown zero and is therefore
infeasible. This is typically circumvented by replacing the true zero by an estimate. The
sensitivity of the solution to this estimate is investigated. Copyright c©2005 IFAC
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1. INTRODUCTION

A model is often used in control design for both anal-
ysis and synthesis purposes. Consequently, system
identification with focus on control design has been
a research area with a lot of activity. The overall ob-
jective of identification for control is to deliver models
suitable for control design. See (Gevers, 1993), (Van
den Hof and Schrama, 1995) and (Hjalmarsson, 2004)
for overviews of the area.

For scalar linear systems, the model should be ac-
curate in the frequency bands important for the con-
trol design and it is generally acknowledged that the
region around the cross-over frequency of the loop
gain is of particular importance. Since the loop gain
depends on the controller yet to be designed, the cross-
over frequency is in generally unknown. However, for
systems that contain performance limitations e.g. non-
minimum phase zeros and time-delays the achievable
bandwidth is restricted. For example, a real single
non-minimum phase zero at z restricts the achiev-
able bandwidth to approximately z/2 (Skogestad and
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Postlethwaite, 1996). Therefore knowledge of a non-
minimum phase zero is very useful since it gives valu-
able information of what control specifications that
can be defined.

This information is also valuable in the identification
step since it would simplify the task of deciding on
model structure, model order, noise model and pre-
filters since it specifies an important frequency range.

Spurred by this observation, expressions for the vari-
ance of an estimated non-minimum zero have been
derived in (Lindqvist, 2001) for FIR models and in
(Hjalmarsson and Lindqvist, 2002) for ARX models.
This work is generalized to include general linear
single input/single output (SISO) model structures in
(Mårtensson and Hjalmarsson, 2003). A key result in
these contributions is that the variance of estimated
non-minimum phase zeros is not subject to the usual
increase in the variance when the model order is in-
creased. Based on these variance results, we will in
this contribution consider input design for accurate
identification of non-minimum phase zeros. The input
design problem is formulated as an optimization prob-
lem where the objective is to minimize the input effort



required to keep the variance of the non-minimum
zero below a certain limit.

The objective of classical input design has been to
minimize some scalar function of the asymptotic pa-
rameter covariance subject to power constraints on
the input or the output, see e.g. (Goodwin and Payne,
1977). From a control design point of view, variance
of frequency functions are typically of more impor-
tance than the parametric covariance itself. There are
several contributions on input design for control that
are based on frequency domain variance expressions
which are asymptotic in the model order and data,
see e.g. (Gevers and Ljung, 1986), (Hjalmarsson et
al., 1996), (Forssell and Ljung, 2000), (Lindqvist and
Hjalmarsson, 2000) and (Zhu and van den Bosch,
2000). However these results cannot handle frequency
wise constraints, which e.g. implies that, in control
applications, robust stability with a prespecified prob-
ability can not be guaranteed by the experiment de-
sign. This has been the inspiration leading to the con-
tributions (Hildebrand and Gevers, 2003), (Bombois
et al., 2004) and (Jansson and Hjalmarsson, 2004),
in which input design for robust control is one of
the leading stars. This contribution can be seen as a
continuation of these efforts.

The paper is organized as follows. Section 2 con-
tains information about system assumptions and the
used identification framework. Asymptotic variance
expressions for an estimated zero are given in Sec-
tion 3. Based on these variance expressions the op-
timal input design problem is formulated and both
analytical and numerical solutions to this problem are
presented in Section 4 and Section 5. Sensitivity and
benefits of optimal input design for identification of
zeros are discussed illustrated in Section 6. The paper
is concluded in Section 7.

2. PARAMETER ESTIMATION

The model of our single input/single output system is
defined by

y(t) = G(q, θ)u(t) +H(q, θ)e(t) (1)
where G and H are parameterized by the real valued
parameter vector θ. Furthermore, y is the output and
u is the input and e is zero mean white noise with
variance λ. It is assumed that G and H have the
rational forms

G(q, θ) =
q−nkB(q, θ)

A(q, θ)
, H(q, θ) =

C(q, θ)

D(q, θ)
(2)

where
A(q, θ) = 1 + a1q

−1 + · · · + ana
q−na (3)

B(q, θ) = b0 + b1q
−1 + · · · + bnb

q−nb (4)
C(q, θ) = 1 + c1q

−1 + · · · + cnc
q−nc (5)

D(q, θ) = 1 + d1q
−1 + · · · + dnd

q−nd (6)
with q being the delay operator. We will assume that
there exists a description of the true system within the
model class defined by θ = θo and λ = λo. The one-
step-ahead predictor for the model (1) is

ŷ(t, θ) =H−1(q, θ)G(q, θ)u(t)

+
(
1 −H−1(q, θ)

)
y(t)

(7)

and the prediction error is ε(t, θ) = y(t)− ŷ(t, θ).The
parameters are estimated with the prediction error
method using a least mean square criterion to mini-
mize the prediction error. The parameter estimate is

θ̂N = arg min
θ

1

2N

N∑

t=1

ε2(t, θ) (8)

where N denotes the number of the data that is used
for the estimation. Under mild assumptions the param-
eter estimate has an asymptotic distribution (Ljung,
1999) that obeys
√
N
(
θ̂N − θo

)
∈ AsN(0, λoP )

P =
(
E{ψ(t, θo)ψ

T (t, θo)}
)−1

ψ(t, θo) = − ∂

∂θ
ε(t, θ)

∣∣∣∣
θ=θo

=
∂

∂θ
ŷ(t|θ)

∣∣∣∣
θ=θo

(9)

Using (7) we obtain

ψ(t, θo) = Fu(q, θo)u(t) + Fe(q, θo)eo(t) (10)

where

Fu(q, θ) =
1

H(q, θ)

∂G(q, θ)

∂θ
(11)

and

Fe(q, θ) =
1

H(q, θ)

∂H(q, θ)

∂θ
(12)

Under the assumption of open loop operation, i.e. that
u and e are uncorrelated, we can write

P−1 =
1

2π

∫ π

−π

Fu(θo)ΦuF
∗
u (θo)dω +Ro (13)

where Φu is the spectrum of the input and where

Ro =
λo

2π

∫ π

−π

Fe(θo)F
∗
e (θo)dω. (14)

The expression (13) is very useful for input design
purposes since it shows exactly the influence of the in-
put spectrum on the asymptotic parameter covariance
matrix. In fact, in open-loop, the only quantity that can
be used to shape P is actually the input spectrum Φu.
This connection between the asymptotic covariance
and the input spectrum will be further exploited for
input design for identification of zeros. But first we
will review some results regarding the accuracy of
identified zeros.

3. ESTIMATION OF ZEROS

Consider identification of a system defined by (1)
and (2). Let θT

b = [b0, . . . , bnb
] and introduce the

polynomial

p(z, θb) = b0z
nb + b1z

nb−1 · · · + bnb
(15)

A zero zi(θ) of the system (1) is defined by

p(zi, θb) = 0.

All zeros are assumed to be unique. Now we consider
one particular zero, zk(θ). Introduce the notation

ẑk = zk(θ̂N ), zo
k = zk(θo),



B̃(q, θ) =
B(q, θ)

1 − zk(θ)q−1
and let

Γb(q) =
[
1 q−1 · · · q−nnb

]T
(16)

Furthermore, let

α2 =
λo|zo

k|2

N |B̃(zo
k)|2

(17)

In (Lindqvist, 2001) it is established that the variance
of an estimated zero is

lim
N→∞

E(ẑk − zo
k)2 = α2Γ∗

b(z
o
k)PbΓb(z

o
k) (18)

where Pb = E(θb − θo
b )(θb − θo

b )
T , i.e. the covariance

matrix of θb. If we consider non-minimum phase zeros
and increase the model order we can simplify the
expression (18). Let u(t) = Q(q)v(t) where v(t) is
a white noise sequence with variance 1 and Q(q) is a
minimum phase filter. Then according to (Mårtensson
and Hjalmarsson, 2003) we have

lim
nb→∞

lim
N→∞

E(ẑk − zo
k)2 =

α2|H(zo
k)|2|A(zo

k)|2
(1 − |zo

k|−2)|Q(zo
k)|2

(19)

4. INPUT DESIGN - ANALYTICAL RESULTS

In this section we will use the variance expressions
(18) and (19) in order to determine suitable inputs for
accurate identification of zeros. The input design will
be formulated as an optimization problem where we
seek the input spectrum with least energy that keeps
the variance below a certain limit. This can be stated
as follows:

min
Φu

1

2π

∫ π

−π

Φu(eiω)dω s.t. Var ẑk ≤ γ (20)

The choice of optimization variable is natural because
the only quantity, asymptotically in N , that can be
used to shape the variance is the spectrum of the input,
cf (13), (18) and (19).

4.1 Input design for finite model orders

The first step to solve (20) is to rewrite the original
problem formulation into a convex program wrt the
input spectrum. The objective function is already con-
vex but the constraint is not. Let

Γb0 =
(
ΓT

b 0
)T

(21)

The variance constraint in (20) using (18) now be-
comes

γ

α2
− Γ∗

b0(z
o
k)PΓb0(z

o
k) ≥ 0 (22)

which by Schur complements is equivalent to

P−1 − α2

γ
Γb0Γ

∗
b0 ≥ 0. (23)

Since the inverse of the covariance matrix is affine in
Φu, the constraint (23) is convex wrt Φu. Thus, the
convex formulation of (20) is

min
Φu

1

2π

∫ π

−π

Φu(eiω)dω

s.t. P−1 − α2

γ
Γb0Γ

∗
b0 ≥ 0

(24)

This means that if (24) is feasible it has a global
optimal solution. Even though (24) is convex, it is
in general infinite-dimensional which calls for special
care when undertaking the optimization. But as will be
shown in Section 5, by imposing certain parameteriza-
tions of the input spectrum it is possible to reformulate
(24) as a finite-dimensional convex optimization prob-
lem. Today, there exist several numerical optimization
routines that solve such problems to any demanded
accuracy. But first we will show that it is possible
to derive analytical solutions to (24) for FIR and for
ARX model structures.

Theorem 4.1. Consider the FIR-system

y(t) = q−nkB(q, θb)u(t) + e(t). (25)

For a non-minimum phase zero, zo
k, the input design

problem (24) is solved by filtering unit variance white
noise with the first order AR-filter

Q(q) =
α√
γ

√
1 − (zo

k)−2

(1 − (zo
k)−1q−1)

, (26)

i.e. by placing a pole in (zo
k)−1. The minimal required

input energy is α2/γ.

Proof: Let the auto-correlations of the input u be
denoted rm. Then the energy of the input is equal to
r0 and

P−1 =

( r0 ··· rnb

...
. . .

...
rnb

... r0

)
= Ru (27)

In this case the constraint in (24) becomes
( r0 ··· rnb

...
. . .

...
rnb

... r0

)
− α2

γ




1 ... (zo
k)−nb

...
. . .

...
(zo

k)−nb ... (zo
k)−2n


 ≥ 0

(28)

To satisfy (28) we need that r0 ≥ α2/γ. If we can find
a covariance function rm with r0 = α2/γ that satisfies
(28) we have a solution. In the following we prove that
the covariance function

rm =
α2

γ
(zo

k)−m (29)

is such a solution. First we note that this particular
choice of rm gives Ru ≥ 0 and that the first row and
column of (28) is zero. Now we need to show that



1 ... z
1−nb
k

...
. . .

...
z
1−nb
k

... 1


−




z
−1

k

...
z
−nb
k


 ( z

−1

k
... z

−nb
k

) ≥ 0

Using Schur complements this is equivalent to

α2

γ




1 ··· z
−nb
k

...
. . .

...
z
−nb
k

··· 1


 = Ru ≥ 0, (30)

which is true as noted before. A signal with the covari-
ance function (29) can be generated by filtering unit
variance white noise with the filter (26). This proves
Theorem 4.1. 2.

Remark: The filter (26) is constructed such that the
variance of the estimated zero will be γ. Thus, the
variance constraint in (20) is tight. Notice that the



optimal filter is independent of the model order. From
this it is easy to conclude that the variance of the
estimated zero also will be independent of the model
order 2 when optimal input design is used.

Theorem 4.2. Consider the ARX-system

y(t) = q−nk
B(q, θb)

A(q, θa)
u(t) +

1

A(q, θa)
e(t). (31)

For a non-minimum phase zero, the input design prob-
lem (24) has the same solution as for a FIR-system,
see Theorem 4.1.

Proof: Similar calculations as for Theorem 4.1. For a
complete proof see (Jansson, 2004). 2.

Remark: As for the FIR models, the variance of the
estimated zeros will be independent of the model order
when we use optimal input design. Furthermore, the
solution in Theorem 4.2 gives a tight bound of the
variance constraint with a filter that is independent
of the A-polynomial. Hence, it is easy to conclude
that the variance of the zero is independent of the A-
polynomial as well. However, it is important to esti-
mate the A-polynomial for the asymptotic properties
(9) to hold.

4.2 Input design for high-order systems

For general linear SISO models it is possible to derive
an analytical solution of (20) based on the asymptotic
variance expression (19).

Theorem 4.3. The input design problem (20) where
the variance of a non-minimum phase zero is defined
by (19) is solved by filtering unit variance white noise
with the first order AR-filter

Q(q) =
α|H(zo

k)A(zo
k)|√

γ

√
1 − (zo

k)−2

(1 − (zo
k)−1q−1)

(32)

Proof: See (Jansson, 2004). 2.

Notice that the optimal filter coincides with (26) for
FIR and ARX models. This in complete line with
the observation that the optimal filter for any finite
model order is actually given by (26) for these model
structures. The solution for other model structures is
in principle the same, i.e. a pole placed in (zo

k)−1,
when the model order is sufficiently large. The only
difference is the gain of the filters.

Remark: In this section the optimal input is presented
in terms of filtered white noise. A signal with auto-
correlations rm = βη−|m| can e.g. also be realized by
a binary signal, see (Tulleken, 1990).

5. INPUT DESIGN - NUMERICAL SOLUTION

We have so far presented analytical solutions to (24)
for FIR and ARX model structures and for general
linear model structures if we let the model order
tend to ∞. Here we will show how to solve (24)

2 The model order must be equal or greater than the true system
order.

for a Box-Jenkins model structure defined by (1)-
(6). The key is to rewrite (24) to a finite-dimensional
convex program which indeed can be obtained by a
suitable parametrization of the input spectrum. For
an overview of different parameterizations of the in-
put spectrum, we refer to (Jansson and Hjalmars-
son, 2004). Here we will illustrate one such approach
introduced in (Stoica and Söderström, 1982). Define
L and {lk} as

L(ejω, θ) =|C(ejω, θ)|2|A(ejω, θ)|4

,
nl∑

k=−nl

lk
(
ekjω + e−kjω

) (33)

where nl = 2na + nc − 1. Furthermore, introduce the
auto-correlations ck defined by

ck =
1

2π

∫ π

−π

Φu(eiω)

L(ejω, θo)
eiωk dω (34)

and let np = na + nb + nd − 1.

Lemma 5.1. LetL(ejω, θ) be defined by (33). Further-
more assume that the polynomials A, B, C and D in
the Box-Jenkins model are coprime. Then there exist
matrices Mk ∈ R

na+nb such that the inverse covari-
ance matrix P−1 defined by (13) can be expressed as

P−1(θo) =

np∑

k=−np

ck(θo)Mk(θo) +Ro(θo) (35)

Proof: See (Stoica and Söderström, 1982) and (Jansson
and Hjalmarsson, 2004) 2.

With this particular parametrization it is possible to
express the input power as a linear function.

Lemma 5.2. The power of the input u(t) with power
spectrum Φu(ω) can be expressed as

1

2π

∫ π

−π

Φu(eiω)dω =

nl∑

k=−nl

cklk (36)

Proof: See (Stoica and Söderström, 1982) and (Jansson
and Hjalmarsson, 2004) 2.

Let m = max(nl, np). Now it is possible to rewrite
the original input design formulation (24).

Theorem 5.1. Under the assumptions stated in Lemma
5.1 and Lemma 5.2, the input design problem (24) is
equivalent to the following finite-dimensional convex
program

min
c0,...,cm

nl∑

k=−nl

cklk

s.t.
np∑

k=−np

ckMk +Ro − α2Γb0Γ
∗
b0 ≥ 0



c0 · · · cm
...

. . .
...

cm · · · c0


 ≥ 0

(37)
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Fig. 1. Optimal spectra for nb = 2 (solid) and for
nb = 3 (dashed).

Proof: Direct application of the results in Lemma 5.1
and Lemma 5.2 to (24). The constraint on the Toeplitz
matrix in (37) assures that the optimization variables
c0, . . . , cm are indeed auto-correlations to a quasi-
stationary process. 2.

The input design problem (37) is now convex and
finite-dimensional and there are several efficient nu-
merical optimization methods that solve such prob-
lems. Let us illustrate the results of this section. We
will assume that the dynamics of the system is defined
by the continuous time system

Gc(s) =
1 − s

(s+ 1)(2s+ 1)
(38)

i.e. there is a continuous time non-minimum phase
zero in 1. With a zero-order hold discretization with
sampling time Ts = 0.25 s this corresponds to the
discrete non-minimum phase zero zd = 1.29. Further-
more, we will assume that the input/output relation
is defined by an output-error (OE) model structure,
the data length is N = 500 and λo = 0.1. When
the model order equals the true system order, i.e. the
order is two, the solution to (37) is basically a sum of
two sinusoids. When the order of the B-polynomial,
nb, is increased, the solution coincides with the first
order AR-filter defined in (32) This is illustrated in
Figure 1 where the optimal spectra for nb = 2 and for
nb = 3 are shown. Notice that there is a quite dramatic
difference between the optimal spectra.

6. SENSITIVITY AND BENEFITS

Based on (19) we will in this section try to quantify
possible benefits of using an optimal or sub-optimal
design instead of using a white input. There will be a
comparison of the obtained variance levels when the
input power is normalized to one for all the designs.
We will also study how the location of the zero affects
the result.

In the first comparison, the optimal input filter with
unit power i.e.

Qopt(q, z
o
k) =

√
1 − (zo

k)−2

1 − (zo
k)−1q−1

(39)

is compared with Q = 1. From (19) we have that

Var ẑk(Qopt)

Var ẑk(Q = 1)
=

1

|Qopt(zo
k)|2 = 1 − (zo

k)−2 (40)

The thick solid line in Figure 2 corresponds to 1 −
(zo

k)−2 as a function of the zero location. Thus there
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Fig. 2. The thick solid line represents the optimal vari-
ance reduction as a function of the zero location,
see (40). The dashed lines corresponds to (42)
and illustrates the variance reduction with a sub-
optimal design.

is a substantial decrease in variance close to the unit
circle when the optimal input design is used instead
of a white input. This comparison also indicates that
when the zero is located far from the unit circle
(|zo

k| ' 4), there is no benefit in using optimal input
design. A white input performs almost as good as the
optimal design. One interpretation of this relates to the
location of the discrete zero wrt to the sampling time.
Consider the continuous system (38), which for Ts =
0.25 has a discrete zero in 1.29. If the sampling time
is increased the discrete zero will move away from the
unit circle, and hence the effect of the non-minimum
phase zero will e.g. be less visible in the discrete
measurements of a step response. Consequently, the
benefits of optimal input design are reduced.

In a practical situation the location of the true zero
is unknown and an estimate of the zero may be used
for input design. Given the optimal filter (39) and an
estimate of the zero, ẑk, a natural choice of input filter
is

Qapp(q, ẑk) =

√
1 − (ẑk)−2

1 − (ẑk)−1q−1
(41)

A reasonable question is how the uncertainty in the
zero location will affect the estimation accuracy. This
is also illustrated in Figure 2. The dashed lines corre-
sponds to the quotient

Var ẑk(Qapp)

Var ẑk(Q = 1)
=

(
1 − (ẑk)−1(zo

k)−1
)2

1 − (ẑk)−2
(42)

as a function of ẑk for four different locations of the
true zero (corresponding to the circles in the figure).
These curves show that there is a quite large tolerance
with respect to the estimated zero location.

Let us now illustrate some of the derived results. The
dynamics of the system is defined by the continuous
system (38). The sampling time is 0.25 s and the data
length is 500 samples but here we will assume that the
true system is of ARX type with a noise variance of
0.0025.

Now we will compare, by means of an example, the
obtained accuracy when using four different types of
inputs. The first input is a Pseudo-Random-Binary-
Signal (PRBS) which has white-noise-like properties.
The second input is the optimal one and hence the
optimal input filter is given by (26). We know from



Table 1. Comparison of variance of esti-
mated non-minimum phase zero.

Model order PRBS Qopt Qapp Square-wave
2 0.0022 0.0011 0.0012 0.0017
5 0.0027 0.0011 0.0012 0.0023

(40) that the optimal gain in accuracy when using the
optimal input compared to a white input is approx-
imately a factor 2.5 when the model order tends to
infinity. These two input signals will be compared to a
sub-optimal input given by (41) with the zero estimate
ẑk = 1.6 and a square-wave signal where the signal
is constant in 10 s before switching level. This square-
wave signal, that takes the values ±1, is constructed
such that the typical dip of the step response for a sys-
tem with a non-minimum phase zero is clearly visible.
The power of all inputs are equalized to one. We have
used a model structure of order two (the true order)
and one of order five, i.e. an over-parametrization.
The result of 10000 Monte-Carlo simulations is given
in Table1. The theoretical value of the variance for
the optimal input is, asymptotically in data, 0.0010,
independently of the model order provided it is larger
than the true system order. For model order two, the
accuracy gain of the optimal input is approximately a
factor 1.5 to 2. When the order is increased to five, this
factor increases to 2 to 2.5, i.e. close to the predicted
value. Notice that the performance of the square-wave
deteriorates for high model orders, but it remains con-
stant for the optimal and the sub-optimal design.

7. CONCLUSIONS

Analytical solutions have been derived for FIR and
ARX model structures that presents the most efficient
input, in terms of input energy, to estimate a discrete
non-minimum phase zero zo

k. The optimal input can be
characterized by a first order AR-filter with a pole in
(zo

k)−1. This solution is independent of the model or-
der. Thus, the variance of the estimated non-minimum
phase zero will be independent of the model order
when the optimal input is applied. A similar analytic
solution is obtained for general linear models based on
a variance expression that is asymptotic in model order
and data. A numerical solution is presented for general
linear SISO models of finite orders. It is illustrated that
the optimal input may be very different depending on
model structure and order.

Possible benefits of optimal design are presented. It is
shown that the variance can be reduced significantly
compared to white inputs and square-waves, espe-
cially when the model is over-parameterized. It is also
shown that a solution based on the optimal AR-filter,
in which the true zero is replaced by an estimated zero,
is quite robust wrt the estimated zero location.
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