
 
 

 
 
 
 

FAULT DIAGNOSIS UNDER MULTIPLE SEQUENTIAL FAULTS OF THE RAIN-GAUGE 

NETWORK USED TO CONTROL THE BARCELONA SEWER SYSTEM 
 
 
 

Jaume Figueras,  Vicenç Puig, Joseba Quevedo 

 

Automatic Control Department (ESAII) - Campus de Terrassa 

Universitat Politècnica de Catalunya (UPC) 
 Rambla Sant Nebridi, 10. 08222 Terrassa (Spain) 

jaume.figueras@upc.es 

 
 
 

 
Abstract:  This paper discusses the problem of fault diagnosis under multiple 

sequential faults occurrence. In industrial applications this type of fault is the most 
common since the continuous operation of systems/processes is required. The fault 

diagnosis algorithms should cope with such type of multiple faults, but degradation 

in their fault isolation capabilities is introduced until the point that they should be 

stopped. A new algorithm to design the fault diagnosis system to be able to tolerate 

multiple sequential sensor faults is proposed. Finally, an example based on the rain-

gauge sensor network of the Barcelona sewer system will be used to illustrate how 

the associated fault diagnosis system behaves under multiple sequential faults 

occurrence and to test the proposed algorithm. Copyright © 2005 IFAC. 
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1. INTRODUCTION 
 
As noticed by Koscielny (2003), the on-line 

diagnosis of industrial processes is mostly performed 

by assumption of single faults. This significantly 

simplifies fault isolation algorithms. However, in 

large-scale technological installations with thousands 

of components such assumption is questionable. 
When with dealing multiple faults two types of 

situations are considered either if they appear as 

simultaneous or sequential. In this paper, the case of 

sequential faults is considered.  

 

A fault diagnosis system is affected by multiple 

sequential faults since after the occurrence of fault 

has been diagnosed, the component affected by this 

fault is not available anymore. This is especially true 

in case of sensor faults. Since from structural analysis 

(Staroswiecki, 1989; 2000), it is known that 
redundancy relations are determined combining 

model equations with known variables, when a 

sensor/actuator is in fault, the set of redundancy 

relations will change.  

 

This paper deals with static linear fault detection 

models derived from correlation analysis with the 

case study of the Barcelona rain-gauge network used 

for the global optimal control of retention tanks and 

the sewer system (Cembrano, 2004). 

 

2. REVIEWING THE FAULT DIAGNOSIS 

PROCEDURE 
 

2.1 FDI fault isolation 

 

Model based fault detection tests are based on the 

evaluation of a set of relations ri(k), also known as 

analytical redundancy relations (ARRs), derived 

from the elementary models of system components 

and the available measurements coming from sensors 

available: 
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Each detection test (ri) should be evaluated on-line in 

order to decide if it is or not violated at a given time 

instant (typically a binary codification is used: 0 

indicate not violation and 1 violation): 
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where τi is the threshold associated to the detection 
test ri(k).  This test constitutes the detection phase of 

the diagnosis process.  
 

Finally, the evaluation of each detection test will 

provide the actual (or observed) fault signature of 

the system: [ ])k(s,),k(s)k( n1 ⋯=s that it is set of 

symptoms that will be supplied to the fault isolation 

module in order to isolate the fault.  

 
2.2 FDI fault isolation 

 

Given a set of symptoms [ ])k(s,),k(s)k( n1 ⋯=s , 

and a set of considered faults: f1,f2,...fm, the 

theoretical fault signature matrix, Σ, can be defined 
binary codifying the effect or not of a fault in every 

symptom. This matrix has as many rows as 

symptoms and as many columns as faults are 

considered. The element ijΣ  of this matrix is equal 

to 1 meaning that the jth fault appears in the 

expression of the ith symptom generator, otherwise is 

equal to 0. Then, fault isolation will consist in 

looking for the theoretical fault signature in the 

fault signature matrix that matches with the 

observed signature. Let us consider an example. 

Given a set of three sensors such 

that: )y(ry 211 = , )y(ry 322 =  and )y(ry 133 = , 

the fault signature matrix is 

 

 fy1 fy2 fy3 

s1 1 1 0 

s2 0 1 1 

s3 1 0 1 

 

Table 1. Fault signature matrix 

 

Then, the following logical tests will allow isolating 

the different faults without considering that noise or 

perturbations may cause detection errors: 
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2.3 Fault isolability and the impact of sequence of 

faults 

 

According to Gertler (1998), a set of faults are 

isolable in the fault signature matrix it their 

respective columns are different. For example, in 

Table 1, fy1, fy2 and fy3 are isolable. However, when a 

fault appears in a given sensor, the fault signature 

matrix should be modified eliminating that sensor 

from all the redundancy relations by substituting it by 

its model.  Preceding in such a way the fault 

signature matrix will be modified and its isolability 

properties will be modified.  For example, after a 

fault in sensor fy1 has been detected and isolated, the 

fault signature matrix should be adapted eliminating 

sensor y1 from this table, in this case replacing sensor 

y1 in model of y3 by its model: 

 
 ))y(r(ry 2133 =  (4) 

The fault signature matrix given in Table 1 will be 

modified accordingly 

 
 fy2 fy3 

s2 1 1 

s3 1 1 

 

Table 2. Fault signature matrix 
 
As it can be seen from this new table, now faults in 

sensors y2 and y3 cannot be isolated. This 

replacement is algebraically possible because of the 

static and linearity properties of the sensor models 

for fault detection but there can be numerical 

singularities where it is impossible to substitute the 

sensor in fault with its model. 

 

3. MINIMAL AND REDUNDANT SETS OF 

SENSOR 

 
Following Staroswiecki (2004), let I given a set of 

sensors available in the non-faulty system, and 

IJ ⊆ a given set configuration with a subset of 

sensors active (non-faulty). Considering P the 

property of having a set of redundancy relations, 

which associated fault signature matrix, allows 

isolating all the sensors, and then two following sets 

can be introduced: 

- the set +I
2  is defined by the configurations 

that satisfies P(J)=1, i.e., the configuration J 

satisfies that generates a set of redundancy 

relations that allow to isolate all the sensors 

involved. 

- the set −I
2  is defined by the configurations 

that satisfies P(J)=0, i.e., such property is 

not satisfied. 

Then, the following definitions can be introduced: 

 

Definition 1.  J ∈ 2I+ is a minimal sensor set for 

property P (MSS) defined above, if and only if 

JK ⊆∀ ,  K ∈ 2I+.  

Definition 2.  J ∈ 2I+ is a redundant sensor set for 
property P (RSS) above, if and only if it is not 

minimal. 

 

The number of minimal and redundant sensor sets for 

a given set of sensors I is denoted respectively by: 



)I(MSS  and )I(RSS . Given a sensor 

configuration J, if 1)J(MSS = , then if any sensor 

that belongs to this set is lost the resulting set of 

sensors will not satisfy the isolability property, i.e., is 

a critical sensor. Staroswiecki (2004) also defines an 

evaluation measurement of the fault tolerance 

capability as the Redundancy Degrees. 

 

Definition 3: Weak Redundancy Degree associated 

with a property P of a functional z and IJ ⊆  
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Where WRD is, in our case, the longest sequence of 
faults before the system looses the isolability 

property. To determine the maximal number of 

sensors that can be lost while keeping the property P 

of the system the Strong Redundancy Degree is 

defined. 

 

Definition 4: Strong Redundancy Degree associated 

with a property P of a functional z and IJ ⊆  
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Where SRD is, in our case, the shortest sequence of 

faults before the system looses the isolability 

property. 

 

4. DESIGN OF THE FAULT DIAGNOSIS 

SYSTEM TO MAXIMIZE MULTIPLE FAULT 
TOLERANCE 

 

On previous studies on the design of a fault diagnosis 

system for a sensor network using models obtained 

by correlation analysis (Puig 2003), the associated 

fault signature matrix was designed to provide the 

best fault isolation properties in case of single faults 

but there was no aim to provide an acceptable 

sequential multiple fault recoverability. Since the 

models were derived from correlation analysis, a 

certain level of correlation LC is fixed to determine 
which sets of sensors can build the fault detection 

models for each sensor. Let IS LC
i ⊂  the sets of 

sensors that are correlated at a level LC for the sensor 

i. Let ns be the number of sensors used to built the 

fault detection models. ns should be determined 

carefully, because a low ns implies good fault 

tolerance since the fault signature matrix will have a 

low number of 1’s, but the model accuracy will be 

poor. On the other hand, choosing a high value for ns 

will fill the signature matrix of 1’s in a way such that 

the fault tolerance capabilities will decrease but the 
model accuracy will increase. Then,  it is needed that 

nsSIi LC
i ≥∈∀ : in order to build the models. If 

this condition is not true for all the sensors, then, the 

either level of correlation or the number of sensors 

required is too high. Once the sensor sets are defined, 

a backtracking algorithm is used to build the models 

and trying to satisfy at the same time that the 

resulting fault signature matrix is column-canonical 

(Gertler 1998). Column-canonical signature matrices 

force the sensors to appear in the same number of 

models (ARRs), and this prevents the existence of 

critical sensors after the appearance of a first fault, 

i.e. −∈∧−=⊂¬∃ I
JIJIJ 21: . Let noj be the 

number of occurrences of the sensor j in all the 

sensor sets, then if  nrInoIj j <∈∃ : , it  can be 

assured that there are sensors not enough correlated 

with the others, and no procedure can be applied to 
improve the multiple fault tolerance properties of the 

signature matrix because of a bad sensor network 

design or the existence of singularities in the 

network. From the correlation analysis the sensor 

network can be redesigned to improve its fault 

tolerance capabilities. The proposed backtracking 

algorithm acts as follows: 

(1)Build the IS
LC
i ⊂  sets from 

correlation analysis 
(2)Order the sets in ascending order by 
its cardinal 
(3)Repeat for each sensor 

- Take a new group of ns sensors from 
its set and test the number of 
occurrences of each sensor in the 
models until none of the sensor 
occurrences is greater than ns and 
none of the groups is repeated or no 
group can be found. 
- If a group of ns sensors to build 
the model is found move to the next 
sensor. 
- If no group of ns sensors can be 
found move to the previous sensor. 
- If the actual sensor is the first 
then no solution can be found. 
- If the actual sensor is the last of 
the list then a solution has been 
found. 

(4)For each sensor built its model. 
(5)Build the signature matrix. 
 

Now with a column-canonical signature matrix, it 

can be assured that the system is detectable and 
isolable even after the occurrence of a first fault. 

Once a fault is identified two different approaches 

can be used, a new signature matrix is calculated 

following Section 2.3 or a new set of models and 

signature matrix can be built using the algorithm 

described before. The second approach lasts until no 

solution can be found, and no column-canonical 

signature matrix can be built, so at this point the only 

approach that can be used is described in Section 2.3 

substituting the faulty sensor by its model. It is also 

possible to relax the signature matrix to a weakly 

isolating structure, although the loss of uniformity of 
the signature matrix it is also detectable and isolable. 

 



5. APPLICATION EXAMPLE: RAIN GAUGE 

NETWORK OF BARCELONA SEWER 

NETWORK 

 

In this paper, fault diagnosis of sequential faults in 

the rain gauge network of Barcelona’s urban sewer 

system is presented (Puig, 2003). 

 

 

5.1   Modelling rain-gauges 

 
In order to detect faults in a given rain-gauge Put 

(“rain-gauge under test”), first a model that relates 

its measurements with previous ones of the same 

rain-gauge (“auto-regressive AR  model”): 

 

))nk(P),...,2k(P),1k(P(f)k(P utututut −−−=    (7) 

 
or with other rain-gauges spatially correlated 

(“moving-average MA model”): 

 

))k(P),...,k(P),k(P(f)k(P m21ut =  (8) 

 

should be derived. When an AR model is used as a 
means of providing analytical redundancy, it is said 

that it exploits temporal redundancy in data while a 

MA model exploits spatial redundancy. In case of 

linearity, AR and MA models can be viewed special 

cases of a more general relation based on a linear 

dynamic ARMA model with multiple inputs 

)]k(P,),k(P[)k( n1 ⋯=u  and one output 

)k(P)k( ut=y  in discrete-time, then the nominal 

input-output relationship, without faults, disturbances 

and noise can be represented by 

 
 )k()q()k( uMy =  (9) 

 
where: M(q) is the discrete transfer function obtained 

from the input-output relationship using classical 

transform operator (q-operator). This general form 

will exploit spatial-temporal redundancy. Due to 

rain is a uncorrelated stochastic process, AR models 

are not useful in rain-gauge fault detection. On the 

other hand, MA models derived from the correlation 

analysis between all the existent rain gauges in the 

telemetry system will allow deriving which are the 
most correlated rain gauges with a given rain gauge 

under test. The use of a MA model would not imply 

only to identify the most correlated rain gauges but 

also the delay among rain gauges. Usually, the delay 

among rain gauges is very variable being impossible 

to determine a fixed delay valid for all the scenarios. 

For this reason only static MA models would be 

considered for fault detection. In Fig 1, the results of 

performing correlation analysis, for a 5-year rain data 

register, taking as rain gauge under test P1 is 

presented. From this figure, it can be observed that 

the most correlated rain gauges are in decreasing 

order: P18, P21, P8, P15, P4, P22, etc. Once the most 

correlated rain gauges have been derived the 

following question to answer is how many rain gauge 

to consider in order to build a fault detection model 

for a given rain-gauge. To answer this question, there 

is a compromise between fault detection and fault 

isolation model properties. An increase in the number 

of rain-gauges used to model the rain rain-gauge 

under test improves the prediction provided by the 

model, but decreases the capacity to isolate the faulty 

rain-gauge because the model is affected by the faults 
of more rain-gauges (Fig. 2). After some 

experimentation, three rain gauges, providing the 

70% of data variance explained  (Fig. 2), was the 

number selected in this application.  

 
 

Fig. 1. Rain gauges most correlated with rain gauge 
P1 
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Fig. 2. % of data variance explained with respect to 

the number of rain-gauges for a given rain-gauge 

using Principal Component Analysis (PCA) 

 

In the case of Barcelona’s rain gauges the fault 

detection models for every rain gauge under test have 

the Boolean signature presented in Fig. 3. With no 

other aim than fault isolability, signature matrix of 
Figure 3 has two critical sensors, P13 and P19, that in 

case of fault will derive in a sensor network does not 

satisfy such property. The, as defined by 

Staroswiecki (2004), the Strong Redundancy Degree 

(SRDM) for the signature matrix M of the system is 1, 

so there is the possibility of system failure after the 

fault of one single sensor. 

 

Number rain-gauges 

Rain-gauge number/% Variance Explained 



The probability of system failure (FP) is defined as 

the relation between the number of sensor fault 

combinations that lead to a system failure and the 

total number of sensor combinations. Using this 

probability, it can be determined which fault 

signature matrix is more fault tolerant reliable 

regarding the fault isolability property. After a sensor 

fault, a new matrix has to be calculated as described 

in Section 2.3. So, for a n sensor network there is a 

set NM,  with |NM| = n of possible new matrices.  

 
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22

P1 X X X X

P2 X X X X

P3 X X X X

P4 X X X X

P5 X X X X

P6 X X X X

P7 X X X X

P8 X X X X

P9 X X X X

P10 X X X X

P11 X X X X

P12 X X X X

P13 X X X X

P14 X X X X

P15 X X X X

P16 X X X X

P17 X X X X

P18 X X X X

P19 X X X X

P20 X X X X

P21 X X X X

P22 X X X X  
Fig. 3. Fault signature matrix of the rain-gauge 

network of Barcelona’s sewer system 

 

 
 

 

 

 

 

 

 

 

Fig. 4. New Matrices after a sensor fault 

 

The probability is computed as the number of 

matrices that are isolable with respect of the number 
of new possible matrices. 
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MFP
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FP(M)=0 means that all possible new matrices are 

isolable, FP(M)=0.2 mean that a 20% of new 

possible matrices are not isolable after a sensor fault. 
Following this definition the original signature 

matrix (Figure 3) has FP(M)=0.0909 after one sensor 

fault. Figure 5 is an extract of the correlation table of 

a statistical study of all the rain gauge in the 

Barcelona network. From this table and the algorithm 

described in Section 4, a set of new signature 

matrices (NSM) can be build in order to study how 

fault tolerant are, how many sensors should be used 

to build the detection models, and how good are 

these detection models. After analyzing thousands of 

signature matrices, the matrices build with 2 sensors 

in the fault detection model are more fault tolerant 
than matrices build with 4 sensors in the fault 

detection model. 82% of new fault signature matrices 

with 2 sensors will not fail after one sensor fault, 

61% of new signature matrices built with 3 sensors 

will not fail after one sensor fault while all new 

matrices built with 4 sensors lead to a system failure 

after one sensor fault. 

 
1 % 2 % 3 % 4 %

P01 18 15.60 21 12.76 8 12.76 15 11.34
P02 15 17.02 12 15.60 13 14.18 22 12.05
P03 19 26.08 16 16.66 17 7.97 4 7.24
P04 21 22.22 20 17.77 19 9.62 3 7.40
P05 20 17.24 14 14.94 13 14.94 12 8.04
P06 11 26.66 14 20.74 10 17.77
P07 3 14.39 10 11.36 19 11.36 11 9.84
P08 1 21.01 15 13.04 22 12.31 18 10.86
P09 17 20.13 19 15.97 18 15.97 3 6.94
P10 11 25.18 6 22.22 14 12.59 16 5.92
P11 6 28.88 10 18.51 14 14.07 16 6.66
P12 2 23.07 13 22.22 15 11.96 22 9.40
P13 2 14.89 12 13.47 5 11.34 20 11.34
P14 6 21.01 16 13.76 11 12.31 20 7.97
P15 2 18.75 22 18.05 21 12.50 1 9.02
P16 3 15.21 6 13.04 19 10.86 11 10.86
P17 9 22.91 19 19.44 3 11.80 18 6.94
P18 1 15.27 21 14.58 9 13.19 19 7.63
P19 3 23.91 17 15.21 4 11.59 16 7.97
P20 4 18.84 5 12.31 13 10.86 21 7.97
P21 4 19.14 15 13.47 18 11.34 20 9.92
P22 15 24.82 2 16.31 21 8.51 12 7.80  

Fig. 5 Extract from the correlation table of the 

Barcelona rain gauge network 
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Fig. 6. System failure probability after one sensor 

fault for different types of signature matrices. 

 

On the other hand, model quality can be computed by 

the sum of correlation values of the sensors used to 
build the models. Calculating the average with 

respect of he number of sensors lead us to the mean 

model quality (MMQ) 

n

Corr

MMQ

n

i

k

j

j
i∑∑

= == 1 1
 

Where n is the number of sensors of the system, k is 

the number of sensors in the model and Corri,j is the 

value of correlation of the sensor i with j. From this 

definition the signature matrix proposed in Figure 3 

has a MMQ of 16.26. The MMQ for the matrices 

build with 3 sensors in the fault detection model have 

a higher MMQ than the others, FP has a nearly 
inappreciable influence on MMQ, although a lower 

FP means low MMQ and higher FP means high 

MMQ for matrices build with 3 sensors. From these 

results a new set of models and a new signature 

matrix shown in Figure 8 was calculated and two 

sensors were eliminated due to a lack of relevance. 

Studying the probability of system failure after 

consecutive sensor faults (Table 2) using the new 

fault signature matrix of Figure 8 and the original 

Signature Matrix 

Fault in Sensor 1 Fault in 
Sensor 2 

Fault in Sensor n 



matrix of Figure 3, the improvement of the system 

fault tolerance capabilities is significant just choosing 

the right models for fault detection.  
 

 
Fig. 7. Quality versus number of sensors and failure 

probability. 

 

 

 

 

 

 

 
 

 

 

 

 

Fig. 8. Fault signature matrix of the rain-gauge 

network of Barcelona’s sewer system applying fault 

tolerance techniques 

 

 

 Old Matrix New Matrix 

1 Consecutive Fault 9,09% 0,00% 

2 Consecutive Faults 18,18% 1,58% 

3 Consecutive Faults 26,96% 5,64% 

4 Consecutive Faults 35,24% 12,77% 

5 Consecutive Faults 43,00% 23,12% 

 

Table 2. Comparison of the probability of system 

failure after consecutive faults 

 

 

6. CONCLUSIONS AND FURTHER WORK 

 

In this paper, the problem of reconfiguring the fault 
diagnosis system in order to cope with multiple 

sequential faults is addressed. After a fault occurs, 

the fault signature matrix should be modified 

eliminating the faulty sensor and replacing its 

occurrences in the rest of equations by its model. 

Doing such a process fault isolability properties of 

the fault signature matrix will be modified. Using the 

methodology proposed by Staroswiecki (2004), the 

reconfiguration of the fault diagnosis systems of the 

rain-gauge network of Barcelona’s sewer system is 

analysed.  A new algorithm to design the fault 

diagnosis system taking into account the tolerance to 

sequential faults is presented and test on such sensor 

network. As a further research, new policies of model 

reconfiguration after a sensor fault, and searching a 

new signature matrix are under study. The difficulty 

in this approach is in the number of correlated 

sensors, since the level of correlation is fixed, the 

number of correlated sensors is also fixed, and in 
many cases there are not enough correlated sensors to 

build the models. Finally, the algorithms used to 

calculate and evaluate the new models and matrices 

are very time consuming because of combinatorial 

explosion, although computers are faster every day 

and system design is an off-line work, a more 

optimized algorithms are tested in order to reduce 

computer time. 
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