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Abstract. The aim of this paper is to analyze and design reduced order observers 
of the rotor flux of induction motors. The design requirements are: a) the 
convergence rate of the rotor flux estimation error; b) a low sensitivity to stator 
and rotor resistance variations; c) a low sensitivity to errors due to the 
implementation of the observers on microprocessor-based systems.  It is shown 
that, in order to satisfy the requirements a)-c), it is sufficient to solve a 
constrained optimization problem according to a criterion in which these 
requirements appear explicitly. The implementation of the observer is discussed. 
The observer is tested by simulation and experiments. Copyright © 2005 IFAC 
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1. INTRODUCTION 
 

As is well known, the implementation of a control 
law based on  rotor flux control for asynchronous 
motors implies the estimate of modulus and phase of 
the rotor flux vector in the frame fixed with the 
stator. In order to estimate the rotor flux components 
in a desired frame voltage model, current model,  full 
and reduced order observers can be implemented 
assuming the speed of the motor as an input variable. 
 
The voltage model observer (Jansen and Lorenz, 
1994) is based on the integration of the equation of 
the mathematical model of the motor expressing the 
dynamics of the stator flux vector and the successive 
computation of the rotor flux using the equation of 
the above model which relates the rotor flux to the 
stator flux and stator current vectors. This observer 
works well at high speed, whereas at low speed it 
suffers from the uncertainties in both the knowledge 

of the stator resistance and the stator voltage 
measurement.  
 
The current model observer (Takahashi and Noguchi, 
1986; Jansen and Lorenz, 1994) is based on the 
integration of the equation of the mathematical model 
of the motor expressing the dynamics of the rotor 
flux vector. It works well at low speed but it is 
sensitive to the rotor time constant and the 
magnetizing inductance.  
 
Both the two above observers are combined in a 
scheme named Improved Gopinath Model (Verghese 
and Sanders, 1988; Jansen and Lorenz, 1994; Kim, 
Choi and Sul, 2002). 
 
The full order observers, fourth-order dynamic 
systems, allows to estimate stator current and rotor 
flux components from measurements of stator 
voltage and stator current components (Schreier, et 
al., 2001; Hinkkanen and Jones, 2002). The principal 



advantage of this observer is the use of the estimated 
stator currents for processing the control law because 
they are less noisy than the measured stator currents 
and do not require filtering which produces time 
delays in the variables used in the above processing. 
 
The reduced order observers, second-order dynamic 
systems, allows to estimate only the rotor flux 
components starting from measurements of the stator 
current components and speed. Filters of suitable 
bandwidth can be employed in order to reproduce 
output signals with negligible delay.  
 
Various structures of reduced order observers of the 
rotor flux have been obtained  using different 
approaches and assuming that the parameters of the 
motor assume their nominal values (Alonge and 
Raimondi, 1987; Bellini, et al., 1988; Verghese and 
Sanders, 1988; Alonge and Raimondi, 1990). In these 
papers the choice of the adjustable parameters of the 
observer is effected, using various methods, in order 
to obtain a satisfactory dynamic and steady state 
behaviour also in presence of motor parameter 
variations. 
 
In the above papers, the tests carried out by 
simulation have shown that the reduced order 
observers can be less sensitive to rotor and stator 
resistance variations and can have a better 
convergence rate than those based on the im-
plementation of the mathematical model of the rotor 
circuit, due to their inherent closed loop structure.  
 
In the present work reduced order observers are 
considered. The design of the observer is carried out 
in order to satisfy the following design requirements 
regarding the rotor flux observation error: a) 
convergence rate; b) low sensitivity to rotor and 
stator resistance variations; c) low sensitivity to 
errors due to the implementation of the observers on 
microprocessor-based systems.  
 
The requirement c) has been introduced in order to 
take into account the finite processing time of the 
microprocessor-based systems, which implies a finite 
sampling period for the observer implementation 
which causes that the voltages supplying the motor 
can be very different from those supplying the 
observer in certain intervals of time, depending on 
the implementation method employed. It follows that 
additional oscillations occur in the rotor flux 
estimation error. In order to reduce these additional 
oscillations, the difference between the voltages 
supplying the motor and those supplying the observer 
is modelled as a disturbance which appears in the 
mathematical model of the observer itself. In order to 
take explicitly into account the requirement b) the 
rotor and stator resistance variations are modelled as 
a disturbance which appears in the mathematical 

model of the electromagnetic circuit of the motor.  
All the requirements a)-c) are then satisfied by 
minimization of a suitable cost function to minimize 
the effects of the two above disturbances on the rotor 
flux observation error, in presence of a constraint 
which takes into account explicitly the requirement 
a).  
 
 

2. STRUCTURE OF THE OBSERVER 
 
Neglecting, as usual, the iron losses, the saturation of 
the electromagnetic circuits and the anisotropy of the 
geometric structure, and considering explicitly the 
rotor and stator resistance variations, the 
mathematical model of the electromagnetic circuit of 
the induction motor, referred to ab axes fixed with 
the stator, consists of the following equations 
(Alonge, D’ Ippolito and Raimondi, 2001; cf. also 
Sangwongwanich, et al., 1990): 
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where ˆ ˆ and  a bφ φ  are the components of the rotor 

flux vector φ̂φφφ , scaled according to the equation 

ˆ
m rL Lφ φφ φφ φφ φ=  being φφφφ  the rotor flux vector, sδ and 

rδ  are the stator and the rotor resistance variations 

and r r rLτδ δ= . It is convenient to note that d  

represents a disturbance due to the rotor and stator 
resistance variations only. 



The problem, now, is to estimate the scaled rotor flux 
vector 2x . In this paper, this is effected by means of a 

reduced order observer. To this end, note that the 
speed ω  varies slowly with respect to the 
electromagnetic variables, especially for 
transportation systems in which the load is practically 
of inertial type, and  consequently it can be 
considered as an additional input. For this reason the 
mechanical equation will not be considered here to 
design the observer. In this case the mathematical 
model (1) of the electromagnetic circuit of the motor 
can be considered as a bilinear model. 
 
To solve the above problem the following procedure 
is employed: a) a structure of Luenberger-type 
reduced order observer is chosen and expressions of 
its gain matrices are obtained, as a function of some 
parameters, in order to force the observation error to 
converge outside a region which contains the origin 

= 0e , using the Lyapunov approach; c) the 
parameters are chosen so as to minimize the 
extension of the above region.  
 
It can be proved the following Assertion. 
 
Assertion – A reduced order observer for the system 
(1) is given by: 
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q is the estimate of the rotor flux vector φ̂φφφ  and m� , 

given by: 

 [ ]T
,    a bm mδ δ δ δ= + =m m m m� , 

takes into account that the voltage supplying the 
motor is different from that supplying the observer. 
   
To prove the above Assertion it is sufficient to 
construct the dynamics of the observation error 

2( ) ( ) - ( )t t te = x q  given by: 

 
  2 2( )ω= + +e L e G d T v� , (6) 

where: 
 2 0 2 0 1,    ,    b a c δ= − = =G G K G T K v m ,  (7) 

 
Model (6) can be represented as in Fig. 1 which 
shows that the observer has a feedback structure for 

0 ≠K 0  subject to disturbances  and  d v . The 

problem is the determination of 0K  in order to 

minimize the effects of the above disturbances. The 
method considered in this paper for determining 0K  

is based on the Lyapunov's theory. 
 
Let consider the following definite positive function: 

 T1
( )

2
V =e e e , (8) 

whose time derivative is: 

  T T T T
2 2( ) qV V= + +e d G e v T e� , (9) 

where: 

  T T
q

1
( ) ( )

2
V ω ω� �= +� �e L L e . (10) 

 

 

 

 

 

 

Fig. 1 Block diagram of the dynamics of the rotor 
flux  estimation error. 

 

Substituting in (10) the expression of ( )ωL  given in 

the first of (4), qV  becomes: 

  T
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where: 
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Assuming, now,  e  = =d 0 v 0 , ( ) qV V=e�  and, 

consequently, qV  must result negative definite; this 

implies that 0F  be negative definite and 1F  be 

negative definite for 0ω >  and positive definite for 
0ω < . Putting: 

 
  0 ,    a>0a= −F I , (13) 

 
and tacking into account the first of (5), the following 
expression for 0K  is obtained: 
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where jk  will be computed later and: 
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From (15), (5) and (12) the following expression is 
obtained for 1F : 

  1 1 jc k= −F I , (16) 

which shows that the above conditions on 1F  are 

satisfied choosing jk  as follows: 

  sgn( ),    0jk r r= ≥ω . (17) 

Substituting (17) in (16) and tacking into account 
(13), (11) becomes: 

  
2

qV f= − e , (18) 

where:  
  1f a c ω= + . 

It follows that: 
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from which, tacking into account the properties of the 
norm operator, the following expression is obtained: 
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which can be written as follows: 
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where  and  

x x
d v  are the maximum values of 

 and  d v , respectively, and ( )T
2σ G  and ( )T

2σ T  

are the maximum singular values of matrices 
T T
2 2 and  G T . 

 
Equation (19) and the constraints on a and r (cfr. (13) 
e (17)) show that the function ( )V e  is a Lyapunov’s 

function in the region defined as follows: 
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Consequently, the choice of the function (8) as 
candidate Lyapunov’s function assures the 
convergence of the observation error to a minimum 
value given by (20). In order to reduce this error it is 
convenient to determine a and r so as to minimize the 
following cost function: 
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Obviously, assuming 1 1p =  and 2 0p =  the effects 

of d  are minimized, whereas putting 1 0p =  and 

2 1p =   the effects of v  are minimized. The solutions  

of the above constrained minimization problem are 
obtained using the sufficient Kuhn-Tucker 
conditions. 
 
Assuming 0 0 and  0a a r r> > >  the following 

solution is obtained: 
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The behaviour of this observer, tested by simulation, 
is not satisfactory; this is due to the very high values 
of the elements of matrices 2 2 and  G T . 

 Assuming 0 0 e  r>r 0a a= > , the solution is: 
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Also in this case the behaviour of the observer is not 
satisfactory for the same reasons as before.  
 
Assuming 0  and  0a a r> =  it is obtained 1 =F 0  

and 0 =K 0  which implies that the observer 

coincides with the equations of the rotor circuit, i.e. 
the current model observer. As already said, the 
behaviour of this observer is not satisfactory.  
 
Finally, assuming 0 0 and  0a a r r> = >  the 

following solution is obtained: 
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which implies that ik  increases with ω  and 

assumes the value 33aρ  at high speed, whereas jk  is 

independent of ω . It follows that the elements of 



2 2 e  G T  do not increase with ω . This solution has 

been chosen and utilized in the paper.   
 
 

3. EXPERIMENTAL RESULTS 
 

In order to test the behaviour of the observer, 
experiments have been carried out on a prototype 
consisting of a 2.2 kW induction motor supplied by a 
voltage source inverter, a measurement system 
employing two Hall current transducers and a 1024 
ppr incremental encoder for measurements of two 
stator currents and speed, respectively, and a dSpace 
DS1103 microcontroller for the implementation of a 
simple PI-based controller and the proposed observer 
and for data acquisition.  The implementation of the 
observer on the above digital system has been carried 
out using the  second-order Runge-Kutta numerical 
method of integration of differential equations, which 
is now supported by the last generation DSP boards. 
This method gives more accurate results than the 
Euler method, but it requires higher computation 
times and, consequently, higher sampling periods.  
  
The nominal values of the parameters of the motor 
useful for the observer design, identified using the 
approach illustrated in (Alonge, D’ Ippolito and 
Raimondi, 2001), are given by: 
 

0.1586 s, 2.9673 ,r sT R= = Ω  

0.37686 H, 0.02555 Hs eL L= = , 

 
Other data relative to the experimental setup are: 
 
DC link voltage 540 V 
Maximum current 10 A 
Hall current transducers 5 V/ 50 A± ±  
Sampling freq. (data acquisition) 12 kHz 
Sampling freq. (PWM) 12 kHz 

1p  0.8 

2p  0.2 

r 0.002 
 
In order to test the observer, the stationary frame 
mathematical model has been implemented on the 
above DS1103 digital system and the rotor flux 
computed using it is compared with the rotor flux 
estimated by means of the observer.  
 
The experimental results are shown in Figs. 2 and 3; 
these Figures have been obtained using MATLAB 
starting from data acquired by the DS1103 system. 
Fig. 2 refer to a transient corresponding to a step 
variation of the reference speed from 0 to 30 rad/s. 
Fig. 3 correspond to a step variation of the reference 
speed from 0 to 140 rad/s followed from a speed 
inversion from 140 to -140 rad/s.  
 

Examination of these Figures shows that the 
observed rotor flux is practically the same of the 
rotor flux computed from the model processed in real 
time by the above DSP-based system together with 
the controller and the observer. In particular, for the 
experiments considered in Fig. 2 and 3, the 
maximum absolute errors are 0.0015 and 0.008 Wb, 
respectively. 
 
 

5. CONCLUSIONS 
 
The observer considered in this paper allows to 
minimize the effects of the rotor and stator resistance 
variations and the differences of the supply voltage 
of the motor and that of the observer. 
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Fig. 2 Transient and steady-state behaviour of the 
reduced-order observer: reference step 
variation from 0 to 30 rad/s. 



Several tests carried out by simulation in various 
operating situations have shown a low sensitivity 
regard all the parameters of the motor. The 
experimental results carried out on a prototype show 
that the observer displays a good behaviour also at 
low speed. The observer can be easily implemented 
on a floating point DSP. For practical 
implementation on a fixed point DSP, the problem 
due to the complexity of the observer can be 
overcome using look-up tables. This problem will be 
object of future work. 
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Fig. 3 Transient and steady-state behaviour of the     
reduced-order observer: reference step 
variation from 0 to 140 rad/s followed from 
a speed inversion from 140 to -140. 
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