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Abstract: In this paper we describe a case study on lacquer production scheduling
that was performed in the European IST-project AMETIST and was provided by
one of the industrial partners. The approach is to derive schedules by means of
reachability analysis: with this technique the search mechanism of model checkers,
in our case here Uppaal, is used to find feasible or optimal schedules. The
advantage of this approach is that the expressiveness of timed automata allows
to model scheduling problems of different kinds, unlike many classical approaches,
and the problem class is robust against changes in the parameter setting. To fight
the typical state space explosion problem a number of standard heuristics have to
be used. We discuss the difficulties when modelling an industrial case of this kind,
describe the experiments we performed, the heuristics used, and the techniques
applied to allow to optimize costs (storage costs, delay costs, etc.) while searching
for schedules. Copyright c©2005 IFAC.
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1. INTRODUCTION

Scheduling algorithms play an important role in
many embedded systems with real-time character-
istics. They occur both as part of the embedded
computational system, where limited resources
(processor capacity, memory) must be shared by
different processes that must meet real-time re-
sponse requirements of the environment, and as
part of the embedding environment, where exter-
nal resources are managed by the embedded soft-
ware (e.g. process control, production planning,
etc.).

Scheduling theory is a well-established branch of
operations research, and has produced a wealth of
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theory and techniques that can be used to solve
many practical problems, such as real-time prob-
lems in operating systems, distributed systems,
process control, etc. (Pinedo and Chao, 1999).

In the last few years alternative approaches to
scheduling synthesis have been proposed based
on the application of reachability analysis. The
basic idea is to use the search mechanisms of
model checkers for finding schedules. The main
advantage of this approach is that automata form
a rich class of models and scheduling problems
with variations in parameter settings can easily
be modelled.

Our case study is one of the four industrial case
studies of the European IST project AMETIST,
which focuses on advanced formal methods for
the modelling and analysis of complex, distributed



real-time systems, with dynamic resource alloca-
tion as one of its special topics. The application
of timed reachability analysis to this problem is
of the main approaches of the project. Technical
material related to this case study, and different
approaches to its solution can be retrieved from
the AMETIST website (AMETIST, n.d.).

The contents of the remainder of this paper is or-
ganized as follows. The principles of the derivation
of schedules by reachability analysis is sketched in
section 2. Section 3 contains a description of the
case study. Modelling issues and the use of heuris-
tics are discussed in section 4 and 5. An extension
of the case study deals with a cost-optimization
problem rather than a feasibility problem and is
presented in section 6. The results of our model
checking experiments are collected and discussed
in section 7. Section 8 evaluates the model check-
ing approach to the case study and concludes the
paper.

2. SCHEDULING SYNTHESIS BASED ON
TIMED AUTOMATA MODEL CHECKING

The synthesis of schedules can be seen as a special
case of control synthesis (Maler et al., 1995). It
was first introduced by (Fehnker, 1999), and by
(Abdeddäım and Maler, 2001).

In general, a model class suitable for real-time
control synthesis must provide the possibility to
represent system events as well as timing infor-
mation. The underlying framework used in this
paper is the one of timed automata as intro-
duced in (Alur and Dill, 1994) and implemented
in the model checker Uppaal. Timed automata
extend the traditional model of automata with
clock variables whose values increase at the rate
of the progress of time. Clocks can be reset
and used as guards for transitions, as well as
in state invariants. In general, timed automata
models have an infinite state space. The region
automaton construction (Alur and Dill, 1994),
however, shows that this infinite state space can
be mapped to an automaton with a finite number
of equivalence classes (regions) as states. Finite-
state model checking techniques can be applied to
the reduced, finite region automaton.

Scheduling synthesis based on timed automata
makes use of the search strategies of model check-
ing. First, a model of the overall, uncontrolled
system behaviour has to be constructed, which
in our case consists of all possible production
steps (of all orders) possible at every moment.
Feasibility is formulated as a real-time property
(“The production is finished by Friday evening”).
The model checker searches the reachable state
space for a state where this property holds. If it

has found one, it provides a diagnostic trace. This
trace contains a sequence of actions and delays
from the initial state to the state found. The start
of a processing step is encoded as an action and
can be found in the trace together with the timing
information. This suffices to extract a feasible
schedule from a diagnostic trace.

The advantage of this approach is its robust-
ness against changes in the setting of parame-
ters, as timed automata provide a very general
model class. The disadvantage lies in the well-
known state-space explosion problem. For inter-
esting cases the model checking approach as de-
scribed above does not terminate. The way out is
to add heuristics, or features of schedules, that
reduce the search space to a size that can be
traversed more easily. In section 5 we discuss the
heuristics used for the case study presented here.

3. PROBLEM DESCRIPTION

The case is about lacquer production scheduling.
Lacquers come in three types and each type is pro-
duced following a different recipe. In the recipes
the order of production steps is specified, with dif-
ferent conditions relating start and/or end times
of subsequent production steps. Furthermore, for
each processing step the necessary resources and
the processing times are given.

Examples of resources are dose spinners, mixing
vessels, predispersers, filling lines, etc. The re-
sources have to be shared by different processes
and this is the source of the scheduling problem.
There is a set of orders, each order specifying the
type, amount, earliest start date and due date.
The original version of the case study deals with
29 orders for a planning period of 2 months (later
extended to cases involving 73 and 219 orders).

The processing times come in two versions. The
“pure” version indicates how long a processing
step takes using a resource. Possible machine
breakdown is encoded in an performance factor
and the processing times are extended accord-
ingly, i.e. if a machine works 85 percent of the
time the original processing time p extends to
p ∗ 1/0.85. The same holds for an availability
factor approximating the restriction of working
hours. We will deal with both, pure and extended
processing times. The basic scheduling problem is
to find schedules such that each order is finished
before its due date.

In a further extension we consider also different
costs, such as storage costs (for orders finishing
too early), delay costs (for delivery after the due
date), and costs that are caused by colour changes
(cleaning resources). There, the problem is to find
(nearly) cost-optimal solutions.
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Fig. 1. A graphical representation of a recipe for
uni-lacquers

4. MODELLING METHOD

A substantial amount of time went into modelling
activities. The most difficult part here was the
information transfer from the industrial partner to
the academic partners. In the first place, there was
a language problem regarding the domain specific
interpretation of terminology. For this purpose we
compiled an initial dictionary in which relevant
terms used are explained in natural language.
This dictionary served as an agreement with the
industrial partner on the main, basic facts. In the
second place, there was a documentation problem,
regarding the (implicit) knowledge that always
exists beyond any written specification. Explana-
tions from the dictionary were used to put the
documentation, mainly consisting of tables, in the
intended context.

Another difficulty was caused by the recipe for-
mat of the industrial partner, which was neither
standard, nor intuitive. A (from computer science
perspective) better representation had to be de-
vised (see figure 4), which also helped detecting
other gaps in the case description.

The lacquer production case is very similar to
the job shop scheduling problem, involving just
a few additional timing constraints, and the ba-
sic modelling by timed automata roughly follows
(Abdeddäım and Maler, 2001). Each processing
step can be mapped to a sequence of three lo-
cations in a timed automaton (fragment), see
figure 4, where the transition between the first
two locations claims the resource, the second lo-
cation represents the processing period, and the
transition to the last location frees the resource.
The sequential and interleaved composition of the
automaton fragments follows the descriptions and
timing restrictions in the recipes.

resource>0
resource:=resource-1
time:=0

time<=processing_time

time==processing_time
resource:=resource+1

Fig. 2. A single processing step modelled as timed
automaton fragment

Heuristics were used to improve search space of
the model. In a later version also costs were added
for storage, delay or colour change.

For each recipe there is a timed automaton (tem-
plate) with free parameters for earliest start date
and due date. Resources are modelled as counters,
and only for the version where costs are consid-
ered, the filling stations are represented by their
own timed automata. Colour change causes costs
at filling stations, which makes it necessary to dis-
tinguish the filling stations and equip them with
a memory for the last colour processed. There
are altogether 29 (resp. 73, 219) instantiations of
the recipe automata with the example data for
orders. The instantiated automata (and the filling
station automata) in parallel composition form
the system model.

When looking for feasible schedules we checked
the reachability property “all orders (automata
representing an order) reach their final state”,
where a guard in the model only allowed to
enter the final state if the due date has not
passed already. For the cost-optimal schedules we
checked the same property without restricting the
accessibility of the final states, imposing a penalty
for late delivery instead.

5. HEURISTICS

The heuristics we used are more or less standard
in operations research. They are not specific for
this case study. The modelling of these heuristics
can be seen as standard patterns that can be re-
used for similar cases.

Each heuristics reduces the search space. We dis-
tinguish two kinds: “nice” heuristics, where we
know that for each good schedule that was pruned
away (by search space reduction) there is a sched-
ule in the remaining search space that is at least
as good. The other heuristics follow a “cut-and-
pray” strategy: the search space is reduced and we
hope that we find good schedules in the remaining
search tree.

Below we discuss each of the heuristics we used.

Non-overtaking. This heuristic is applied within
each group of orders following the same recipe.



It says, that an order started earlier also will
get critical resources earlier than an order started
later. As the orders follow identical recipes this
obviously is also a “nice” heuristic.

Non-laziness. In operations research non-lazy
schedules are called active. The following be-
haviour is excluded: a process needs a resource
that is available, but it does not take the resource.
Instead, the resource remains unused, no other
process takes it. Then, after a period of waiting
the process decides to take the resource. (And
we regard this waiting time as wasted, which is
only true if there are no timing requirements for
starting moments of subsequent processes.) This
is a “nice” heuristic.

Greediness. This is a “cut-and-pray” heuristic.
If there is a process step that needs a resource
that is available, then the process step claims
this resource immediately. By this it excludes
possibly better schedules where some other (more
important, because closer to deadline) process
would claim the same resource shortly later. Note,
that greediness is stronger than non-laziness, i.e.
every greedy schedule is also a non-lazy one.

Reducing active orders. When not restrict-
ing the number of active orders (i.e. the orders
that are processed at a certain moment), it of-
ten happens that many processes fight for the
same resources, and block other resources while
they wait. In our example the dose spinners (2
instances of these available) have to be used by
each process twice, which makes them the most
critical resource. Restricting the overall number
of active orders avoids analysis of behaviour that
is likely to be ineffective. This heuristic was very
powerful, but belongs to the “cut-and-pray” type.

6. ADDING COSTS AND OTHER
CONSTRAINTS

Using standard Uppaal we had initially approx-
imated some constraints to simplify the problem.
In this section we discuss the extension of the
model to cope with the full constraints. We begin
with an informal explanation of these constraints.

Setup times and costs. The filling lines must
be cleaned between two consecutive orders if those
orders are not of the same type. Thus, additional
cleaning time (5 – 20 hours) is needed and there
is a certain cost involved with cleaning.

Delay and storage costs. The happiness of a
customer decreases linearly with the lateness of
his order. Thus, each order has a delay cost, a
“penalty” measured in euros per minute. Simi-
larly, if an order is finished too early, it has to
be stored and this also costs a certain amount

of euros per minute. In the initial problem, the
costs are approximated by requiring that every
order must be finished before its deadline. A more
refined cost model enables us to prefer an order
that is five minutes late above an order that is
weeks early.

Working hours. The lacquer production is gov-
erned by personnel that works in two or three
shifts, depending on the machine they operate.
Furthermore, the production is interrupted in
weekends. Note that this constrained is approx-
imated in the initial problem by the availability
factor of machines. Another complicating factor
is that some production steps may only be inter-
rupted for 12 hours.

The above constraints were addressed in the fol-
lowing ways:

• Filling lines are modelled by an automaton
that keeps track of the type of the order that
has last been processed by it.

• The Uppaal version for linearly priced timed
automata enables us to model delay and
storage costs as affine functions of the clock
variables.

• Modelling the working hours requires a sep-
arate automaton that computes the effective
processing time, given the current time and
the net processing time. The additional au-
tomaton is rather big and laborious to pro-
duce, but quite logical in structure.

7. MODEL CHECKING EXPERIMENTS

In Table 7 we collected models and model check-
ing experiments for the feasibility analysis. The
results were obtained using Uppaal 3.5.3 with a
2.6GHz Intel P4 Xeron processor and 2.5GB of
memory running Linux kernel 2.4.22.

Initial experiments revealed scalability problems
in the models and in Uppaal. Some of these
problems where caused by the very large number
of clocks used in the models. The heuristic limiting
the number of active jobs also provides a limit on
the number of clocks needed (one per active job
instead of one per job); and the non-overtaking
heuristic provides an easy way of uniquely assign-
ing shared clocks to jobs since the starting order
of jobs of a particular type is fixed. This change
reduced the number of clocks to 3 · A + 3, where
A is the maximum number of active jobs.

The results show, that even for the case of 29
jobs the use of the heuristics is essential. The
non-overtaking heuristic does not seem to make
much of a difference in the case without avail-
ability factors, whereas in the case with avail-
ability factors the performance gets worse. This
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29 - - - −
29 - nl - 0.47
29 - nl no - 0.45
29 - g - 0.47
29 - g no - 0.45

29 av nl - 11.0
29 av nl no - 17.8
29 av g - 10.9
29 av g no - 17.8
29 av nl no 4 0.1

73 - - - −
73 - nl - 565
73 - nl no - 162
73 - nl no 3 0.46
73 - nl no 4 1.40

73 - g - 565
73 - g no - 162
73 - g no 3 0.47
73 - g no 4 1.42

73 av nl - −
73 av nl no - −
73 av nl no 3 −
73 av nl no 4 0.40

73 av g - −
73 av g no - −
73 av g no 3 −
73 av g no 4 0.40
73 av g no 5 0.74

219 - g no 4 3.46

Table 1. Characteristics of models
and experiments. Abbreviations in the
“working hours” column are: -:no mod-
elling and av:availability factors. Ab-
breviations in the “heuristics” column
are: g:greedy, nl:non-lazy, and no:non-
overtaking. The “-” in the “termination
time” column expresses that the search
was stopped after 10 minute. All exper-

iments use depth-first search.

might be attributed to the fact, that although
non-overtaking reduces the search space, we do
not actually search the complete search space.
Thus non-overtaking introduces deadlocks (due
to the pruning) which force Uppaalto backtrack
even though any of these paths might result in
feasible schedules. This changes when we go to 73
orders. Here non-overtaking does indeed improve
the speed dramatically. Limiting the number of
active jobs increases the speed by several orders of
magnitude (partially due the possibility to reuse

clocks). The experiments also show that the good
upper bound for the number of active jobs can
vary in different settings and can only be deter-
mined during experimentation.

Experiments have been performed also for the
extended version of the case study using Uppaal
Cora. It should be noted that for the extended
case study (due to the introduction of storage
and delay costs) non-laziness, non-overtaking, and
greediness are cut-and-pray heuristics. Three dif-
ferent models of working hours were used: One
without any working hours, one with availability
factors, and one with an exact model. In case
of the exact working hour model, the greediness
heuristic is not implementable, but this is due to a
limitation in Uppaal Cora. For the experiments,
a randomised best-depth-first search with a ran-
domised backtracking algorithm were used. For
the models with the exact working hour models,
limiting the number of active jobs is crucial for
finding good schedules. All other heuristics are
too restrive as they prune good solutions from the
search. For the other two models, neither heuristic
made much of a difference. For the model with the
exact working hour models, we found schedules
competitive with those provided by the industrial
partner. In some cases, we find schedules at half
the cost, although this requires running Uppaal
Coraseveral times as the search is randomised.
Due to the enormous size of the state space, how-
ever, we are not able to tell whether this is the
lowest possible cost.

8. STOCHASTIC ANALYSIS

As explained earlier, so-called performance and
availability factors are used to indicate the per-
centage of time that a resource is unavailable. The
way in which the industrial partner deals with
this information is that the processing time on
each resource is extended by the corresponding
factor. E.g. if a machine only is available half of
the time, the processing time for each processing
step using this resource is doubled. Schedules are
derived assuming that the process durations are
extended in this way. This raised the question on
the interpretation of the schedules derived with
the extended processing times. Stochastic analysis
(Bohnenkamp et al., 2004) showed that the sched-
ules derived in this way have less chance to reach
the due dates than schedules without extended
times. The interpretation roughly is as follows: if
we reserve time for break-down when a resource
is actually available, this time is simply wasted.
Later, when the resource really breaks down, there
will be too little time left to reach the due date. A
conclusion is that extending processing times may
give a useful indication how many orders can prob-
ably be done within a long time interval, say a few



months, but it does not help for daily fine-tuned
scheduling. Consequently, for long-term schedul-
ing and daily scheduling we need different models,
or different instances of the problem.

9. EVALUATION AND CONCLUSION

We showed that feasible schedules for a lacquer
production case can be derived doing real-time
reachability analysis with the timed automata
model checker Uppaal. We treated versions of
the case for 29 orders, 73 and 219 orders. To
deal with the full set of constraints we had to
introduce setup-costs for filling stations, storage
costs (for too early finished orders), and delay
costs (for orders that are finished too late). In
doing so, the problem was transformed into a cost-
optimization problem. This was treated by Up-
paal Cora, a cost-optimal version of Uppaal. A
further extension of the model consisted in adding
working-hours constraints by adding a separate
automaton. Also in this case schedules could be
derived using Uppaal Cora.

It is clear that this application of model checking
techniques is not (yet) push-button technology:
to obtain results models have to be constructed
with care, and the right heuristics have to be
identified. Yet, it is to be expected that many
production scheduling problems will have similar
ingredients and that modelling techniques and
patterns for typical plant processes and heuristics
can be reused. Further experiments have to be
carried out to identify a useful collections of these.
It turns out that one advantage of the timed-
automaton approach is that it is reasonably easy
to model different problem parameters without
changing the algorithm for schedule synthesis.
One example is maximal offset times that seem
to form a problem with the Axxom tool, but can
be modelled easily with timed automata. For the
versions of the case with 29, 73, and 219 orders
we performed certainly well. Also the cost-optimal
versions can compete with the Axxom tool.

This case study also raised a number of pragmatic
questions concerning the modelling. It turned out
to be quite difficult to obtain all the relevant
information from the industrial partner. Another,
related aspect is that the problem description of
the case study provider was strongly influenced
by the capabilities of their own planning tool.
For example, very high delay costs are a specific
way to make it treat due dates as hard deadlines.
This raises the question to what extent we were
modelling the original problem, or remodelling the
model of the industrial partner.

The use of the performance and availability fac-
tors also leads to questions of interpretation. Ex-
tending the processing times by these factors can

be used to analyse how many orders could be
treated at all over longer periods of time. Given
such an objective it does not seem very useful
to include penalties for such things as changing
colours that are insignificant compared to the
costs of missing deadlines, as is done in the model.

The stochastic analysis showed that using per-
formance and availability factors for concrete
scheduling for short periods increases the prob-
ability to miss deadlines. It is unclear what mod-
elling assumptions are best suitable for the deriva-
tion of such schedules, where storage costs have to
be minimized and delay costs be avoided.

Summarizing, we can say the application of model
checking techniques for production scheduling is
quite promising, but that further work is required
on evaluating modelling methods, reusability of
modelling patterns, and identification and evalu-
ation of heuristics, based on larger case studies.
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