
PARAMETRIZING ALL SOLUTIONS OF
UNCONTROLLABLE MULTIDIMENSIONAL

LINEAR SYSTEMS

A. Quadrat ∗ D. Robertz ∗∗

∗ INRIA Sophia Antipolis, CAFE project, 2004 Route des
Lucioles BP 93, 06902 Sophia Antipolis Cedex, France.

Alban.Quadrat@sophia.inria.fr.
∗∗ Lehrstuhl B für Mathematik RWTH - Aachen,

Templergraben 64, 52056 Aachen, Germany.
daniel@momo.math.rwth-aachen.de.

Abstract: Using an algebraic analysis approach, we derive a necessary and sufficient
condition so that we can parametrize all solutions of a multidimensional linear
system by glueing the controllable sub-behaviour with the autonomous elements.
Effective algorithms checking this condition are obtained. This result generalizes
a result of 1-D linear systems for a class of multidimensional linear systems.
Copyright c©2005 IFAC

Keywords: Multidimensional linear systems, controllability, parametrizability,
autonomous elements, linear systems over Ore algebras, Gröbner bases.

1. INTRODUCTION

Let us first show how to parametrize all solutions
of a time-invariant linear control system defined
by ordinary differential equations.

We consider the commutative polynomial ring
D = R

[
d
dt

]
of differential operators in d

dt with
coefficients in the fieldR. An element of D has the
form

∑n
i=0 ai

di

dti where ai ∈ R. Let us consider a
full row rank matrix R ∈ Dq×p, i.e., the rows of
R are D-linearly independent. Then, computing a
Smith form for R, we obtain

R = U (diag(d1, . . . , dq) 0)V,

where the matrices U ∈ Dq×q and V ∈ Dp×p

are unimodular, i.e., detU and det V are non-zero
constants, diag denotes the diagonal matrix and
0 6= di ∈ D. Hence, R can be written as:

R = R′′R′,

R′′ = U diag(d1, . . . , dq) ∈ Dq×q,

R′ = (Iq 0) V ∈ Dq×p.

If we denote by r = p − q and V = (V T
1 V T

2 )T ,
V1 ∈ Dq×p, V2 ∈ Dr×p, then, from the latter of
the previous equations, we obtain R′ = V1. Using
the fact that V is unimodular, then the entries of
V −1 belong to D. If we denote by V −1 = (S Q),
where S ∈ Dp×q and Q ∈ Dp×r, then we obtain:(

R′

V2

)
(S Q) = Ip, (1)

(S Q)
(

R′

V2

)
= Ip. (2)

Now, solving the system R η = 0 is equivalent to
solve the following system:{

R′′ τ = 0,
τ = R′ η.

The first system R′′ τ = 0 is equivalent to

d1 τ1 = 0, . . . , dq τq = 0, (3)

where τ = (τ1 . . . τq)T . We denote by τ a funda-
mental solution of R′′ τ = 0 in a signal space F
which has a D-module structure (e.g., C∞,D′).



Then, we need to solve the inhomogeneous system
R′ η = τ . But, using (1), we obtain R′ S = Iq, and
thus, a particular solution for R′ η = τ is given
by η = S τ ∈ Fq. Moreover, (2) is equivalent to
S R′ + QV2 = Ip, and thus, if R′ η = 0, then we
have η = S (R′ η) + Q (V2 η) = Q (V2 η), showing
that a general solution of the homogeneous system
R′ η = 0 is given by η = Qξ for a certain ξ ∈ Fr.

Therefore, SolF (R) = {η ∈ Fp |R η = 0} has the
following explicit parametrization:

η = S τ + Qξ = (S Q)
(

τ
ξ

)
, ∀ ξ ∈ Fr. (4)

We note that
SolF (R′′) = SolF (diag(d1, . . . , dq))

= {τ ∈ Fq | d1 τ1 = 0, . . . , dq τq = 0}

is a finite-dimensionalR-vector space. Let us call l
its dimension and let us denote by {θi}1≤i≤l one of
its bases. Then, the general solution τ can be writ-
ten as τ =

∑l
i=1 ci θi, where ci ∈ R. Therefore, we

obtain the parametrization SolF (R) = Φ(Rl×Fr)
where Φ is defined by:

Φ : R
l ×Fr −→ Fp,

(c1 . . . cl, ξ)T 7−→
l∑

i=1

ci (S θi) + Qξ.
(5)

Finally, if the set of initial conditions of the
system R η = 0 is known, then the corresponding
constants ci can be explicitly computed.

We point out that the existence of non-trivial di in
the Smith form of R (i.e., existence of di ∈ D\R)
is equivalent to the lack of controllability of the
system R η = 0. The R-vector space

SolF (R′) = {η ∈ Fp |R′ η = 0} (6)

is called the controllable sub-behaviour of the be-
haviour SolF (R) = {η ∈ Fp |R η = 0}, whereas

SolF (R′′) = {τ ∈ Fq |R′′ τ = 0, τ = R′ η}

is called the autonomous behaviour. For time-
invariant ordinary differential equations, it is well-
known that SolF (R′′) can be interpreted as a sub-
behaviour of SolF (R) and we have:

SolF (R) = SolF (R′)⊕ SolF (R′′). (7)

The controllable sub-behaviour SolF (R′) can be
parametrized. See (Polderman and Willems, 1998;
Pommaret and Quadrat, 1998) for more details.

The main interest of (4) is to parametrize the be-
haviour SolF (R) and not simply the controllable
sub-behaviour SolF (R′). Parametrizations (4) and
(5) show how to glue elements of SolF (R′′) with
those of SolF (R′) in order to obtain all trajectories
of the system SolF (R).

The purpose of this paper is to show when and
how it is possible to extend the previous con-

struction to multidimensional linear systems de-
fined over Ore algebras (e.g., differential time-
delay systems, partial differential equations, dis-
crete systems) with constant or variable coeffi-
cients (Chyzak et al., 2005).

2. MODULE-THEORETIC APPROACH

For multidimensional linear systems defined over
(non-commutative) multivariate polynomial rings,
no Smith form exists. Therefore, we cannot copy
the results obtained in the introduction in order
to parametrize all solutions of such systems.

In order to cope with this problem, we introduce
concepts of module theory. In what follows, D
denotes a (non-commutative) Ore algebra which
is a left and right noetherian domain (Chyzak et
al., 2005). Then, D satisfies the left and right Ore
properties, namely

∀ d1, d2 ∈ D, ∃ (u1, u2), (v1, v2) ∈ D2\(0, 0) :
u1 d1 = u2 d2, d1 v1 = d2 v2,

and

K = {d−1 n = ñ d̃−1 | 0 6= d, n, 0 6= d̃, ñ ∈ D}

is the (left and right) quotient division ring of D.

Let R ∈ Dq×p and M = D1×p/(D1×q R) be the
finitely presented left D-module defined as the
cokernel of the D-morphism:

.R : D1×q −→ D1×p, λ 7−→ λ R. (8)

The left D-module M = D1×p/(D1×q R) is asso-
ciated with the system R η = 0 in the sense that

homD(M,F) = {η ∈ Fp |R η = 0}, (9)

where homD(M,F) denotes the abelian group
formed by the D-morphisms from M to the left
D-module F . See (Pommaret and Quadrat, 2003)
for more details. Moreover, M is defined by the
D-linear combinations of the equations R y = 0,
where the components of y = (y1 . . . yp)T are the
generators of M , i.e., yi is the class in M of the
ith vector ei of the standard basis of D1×p. See
(Chyzak et al., 2005) for more details.

Definition 1. The left D-module M is said to be:

• Free if there exists r ∈ Z+ such that M is
isomorphic to D1×r (denoted by M ∼= D1×r).

• Projective if there exist a left D-module N
and r ∈ Z+ such that M ⊕N ∼= D1×r.
• Torsion-free if the torsion-submodule

t(M) = {m ∈M | ∃ 0 6= d ∈ D : d m = 0}

of M is trivial, i.e., t(M) = 0. Elements of
t(M) are called torsion elements of M .

• Torsion if t(M) = M .



We give characterizations of the previous proper-
ties. We refer to (Pommaret and Quadrat, 1998;
Pommaret and Quadrat, 2003) for the proofs.

Theorem 1. Let us consider R ∈ Dq×p and the left
D-module M = D1×p/(D1×q R). Then, we have:

(1) M is a free left D-module iff there exist
Q ∈ Dp×m and T ∈ Dm×p such that:{

ker(.Q) , {λ ∈ D1×p |λ Q = 0} = D1×q R,

T Q = Im.

(2) M is a projective left D-module iff there
exists S ∈ Dp×q such that R S R = R.

(3) t(M) = ((K1×q R) ∩ D1×p)/(D1×q R), and
thus, M is a torsion-free left D-module iff:

(K1×q R) ∩ D1×p = D1×q R.

(4) M/t(M) = D1×p/((K1×q R) ∩ D1×p).
(5) M is a torsion left D-module iff:

(K1×q R) ∩ D1×p = D1×p.

We recall some results (Rotman, 1979).

Theorem 2. (1) The following implications hold:

free ⇒ projective ⇒ torsion-free.

(2) If D = k[x1, . . . , xn] is a commutative poly-
nomial ring over a field k, then every projec-
tive D-module is free.

(3) If D is a (left) principal ideal domain, i.e.,
every (left) ideal of D can be generated by
means of one element, (e.g., D = R

[
d
dt

]
,

R(t)
[

d
dt

]
), then every torsion-free (left) D-

module M is free.

There exists an algorithm which computes a ma-
trix R′ ∈ Dq′×p such that:

(K1×q R) ∩ D1×p = D1×q′
R′.

See (Chyzak et al., 2005; Pommaret and Quadrat,
1998) for more details. This algorithm is im-
plemented in the Maple package OreModules
(Chyzak et al., 2003) (see procedure Exti) for
rings of differential operators with polynomial
or rational coefficients (i.e., D = A[∂1, . . . , ∂n],
where A = R, R[x1, . . . , xn], R(x1, . . . , xn)),
for time-invariant time-delay systems (i.e., D =
R[ d

dt , δh1 , . . . , δhr
] with incommensurable delays

δhi
f(t) = f(t − hi)) and multidimensional dis-

crete systems (i.e., D = A[σ1, . . . , σr], where
σiz(n1, . . . , nr) = z(n1, . . . , ni+1, . . . nr) and A =
R, R[n1, . . . , nr], R(n1, . . . , nr)). Using Ore-
Modules, we can effectively test whether or not
a finitely presented left D-module has non-trivial
torsion elements, is torsion-free or projective.

Definition 2. A sequence of D-modules Pi and D-
morphisms di : Pi → Pi−1 satisfying di ◦di+1 = 0,

i.e., im di+1 ⊆ ker di, is said to be exact at Pr if
ker dr = im dr+1 and exact if it is exact at all Pr.

Example 1. The following sequence of morphisms

0 −→M ′ f−→M
g−→M ′′ −→ 0 (10)

is exact iff f is injective, imf = ker g and g is
surjective. (10) is called a short exact sequence.

Using the embedding i of t(M) into M and the
canonical projection ρ of M onto M/t(M), we
obtain the following short exact sequence:

0 −→ t(M) i−→M
ρ−→M/t(M) −→ 0. (11)

If M = D1×p/(D1×q R), then, from the D-
morphism (8), we have the exact sequence

0 −→ ker(.R) −→ D1×q .R−→ D1×p π−→M −→ 0,
(12)

where π(λ) is the class of λ ∈ D1×p in M .

Definition 3. A left D-module F is said to be
injective if, for every short exact sequence (10),
we have the following short exact sequence

0←− homD(M ′,F)
f?

←− homD(M,F)
g?

←− homD(M ′′,F)←− 0,

where f?(φ) , φ ◦ f for all φ ∈ homD(M,F).

Theorem 3. (Malgrange, 1966) If Ω is a convex
open subset of Rn, then C∞(Ω) and D′(Ω) are
injective D = R[∂1, . . . , ∂n]-modules (∂i = ∂

∂xi
).

Definition 4. A short exact sequence (10) splits if
one of the following equivalent conditions holds:

(1) There exists a D-morphism h : M ′′ −→ M
such that g ◦ h = idM ′′ .

(2) There exists a D-morphism k : M −→ M ′

such that k ◦ f = idM ′ .
(3) We have an isomorphism M ∼= M ′ ⊕M ′′.

Proposition 1. (Rotman, 1979) If M ′′ is a projec-
tive D-module, then the short exact sequence (10)
splits and we have M ∼= M ′ ⊕M ′′.

3. A NECESSARY AND SUFFICIENT
CONDITION

Let us investigate when the exact sequence (11)
splits. A first case is when M/t(M) is a projective
left D-module. Indeed, by Proposition 1, the exact
sequence (11) splits and we obtain:

M ∼= t(M)⊕M/t(M). (13)

In particular, if D = R
[

d
dt

]
or R(t)

[
d
dt

]
, then,

using 3 of Theorem 2, we obtain that M/t(M) is
free, and thus, projective by 1 of Theorem 2. The
same result holds over the ring R[t][ d

dt ] as every



torsion-free left D-module is projective (Chyzak
et al., 2005). We shall show in Section 5 how
the direct sum (13) of left D-modules implies
the direct sum (7) between the controllable and
autonomous sub-behaviours.

Lemma 1. Let us consider M = D1×p/(D1×q R)
and M/t(M) = D1×p/(D1×q′

R′). Then, there
exists R′′ ∈ Dq×q′

such that R = R′′R′ and we
have the following commutative exact diagram

D1×q .R−→ D1×p π−→ M −→ 0
.R′′ ↓ ‖ ρ ↓

D1×q′ .R′

−→ D1×p π′

−→ M/t(M) −→ 0,
↓
0

(14)

where π′ is defined by π′ = π ◦ ρ.

PROOF. By 4 of Theorem 1, we have

(K1×q R) ∩D1×p = D1×q′
R′

and we check that D1×q R ⊆ (K1×q R) ∩ D1×p,
which proves that D1×q R ⊆ D1×q′

R′. Then,
every row Ri of R belongs to D1×q′

R′, and thus,
there exists R′′i ∈ D1×q′

such that Ri = R′′i R′. If
we denote by R′′ = ((R′′1 )T . . . (R′′q )T )T , then we
obtain R = R′′R′. The commutative diagram (14)
directly follows from (11), (12) and R = R′′R′.

The matrix R′′ ∈ Dq×q′
can be computed using

the procedure Factorize of OreModules.

Theorem 4. Let R ∈ Dq×p, M = D1×p/(D1×q R)
be a left D-module and R′ ∈ Dq′×p a matrix
such that M/t(M) = D1×p/(D1×q′

R′). Then, the
short exact sequence (11) splits, i.e., we have (13),
iff there exist S ∈ Dp×q′

and V ∈ Dq′×q such that:

R′ −R′ S R′ = V R. (15)

PROOF. Let us suppose that there exist matri-
ces S ∈ Dp×q′

and V ∈ Dq′×q satisfying (15) and
let us denote by U = Ip − S R′. Then, we have:

U = Ip − S R′, R′ U = V R. (16)

From the last equality, we obtain the following
commutative exact diagram:

D1×q′ .R′

−→ D1×p π′

−→ M/t(M) −→ 0
.V ↓ .U ↓
D1×q .R−→ D1×p π−→ M −→ 0.

(17)

Then, the D-morphism h : M/t(M) −→ M ,
defined by h(m′) = π(λ U), where λ ∈ D1×p is
any element satisfying m′ = π′(λ), is well-defined.
Then, using π′ = ρ◦π, for m′ ∈M/t(M), we have
(ρ ◦ h)(m′) = ρ(π(λ U)) = π′(λ U), and thus,

(ρ ◦ h− idM/t(M))(m′) = π′(λ U)− π′(λ)
= π′(λ (U − Ip)) = −π′(λ (S R′)) = 0,

because (λ S) R′ ∈ D1×q′
R′ and π′ is the canoni-

cal projection onto M/t(M) = D1×p/(D1×q′
R′).

Therefore, we have ρ ◦h = idM/t(M) showing that
(11) splits by 1 of Definition 4.

Conversely, let us suppose that there exists a D-
morphism h satisfying ρ◦h = idM/t(M). We denote
by ei ∈ D1×p the vector with 1 in the ith position
and 0 elsewhere. Then, we have (h ◦ π′)(ei) ∈M ,
and thus, there exists Ui ∈ D1×p such that

(h ◦ π′)(ei) = π(Ui), i = 1, . . . , p,

as π is surjective. If we define U = (UT
1 . . . UT

p )T ∈
Dp×p, then we have π ◦ (.U) = h ◦ π′ and:

π ◦ (.U ◦ (.R′)) = h ◦ π′ ◦ (.R′) = 0,

⇒ D1×q′
(R′ U ′) ⊆ ker π = D1×q R.

In particular, if R′j denotes the jth row of R′,
then we have R′j U ∈ D1×q R, and thus, there
exists Vj ∈ D1×q such that R′j U = Vj R. If we
denote by V = (V T

1 . . . V T
q′ )T ∈ Dq′×q, then we

obtain R′ U = V R and the commutative exact
diagram (17). Composing (17) and (14), we obtain
the following commutative diagram:

D1×q′ .R′

−→ D1×p π′

−→ M/t(M) −→ 0
.(V R′′) ↓ .U ↓ ρ ◦ h ↓

D1×q′ .R′

−→ D1×p π′

−→ M/t(M) −→ 0.

(18)

We have (ρ ◦ h)(π′(ei)) = π′(ei U), and using the
fact that ρ ◦ h = idM/t(M), we obtain:

π′(ei) = π′(ei U)⇒ π′(ei (Ip − U)) = 0,

⇒ ∃ Si ∈ D1×q′
: ei (Ip − U) = Si R′, 1 ≤ i ≤ p,

⇒ ∃ S = (ST
1 . . . ST

p )T ∈ Dp×q′
: U − Ip = S R′.

Therefore, we have just proved the existence of
U ∈ Dp×p, V ∈ Dq′×q and S ∈ Dp×q′

satisfying
(16), or equivalently, (15) by eliminating U .

We note that we have h(M/t(M)) ⊕ t(M) = M ,
where h is defined in the beginning of the proof.
Condition (15) corresponds to the existence of a
generalized inverse S of R′ modulo D1×q R.

Pommaret has just pointed out to us that a
similar result had already appeared in (Zerz and
Lomadze, 2001) with a different proof. We want to
acknowledge this priority. However, the purposes
of the last paper are different and we also study
here the non-commutative case.

4. ALGORITHMS

We first consider the case where D is a commuta-
tive polynomial ring. Then, we use the fact that
the product U · V · W of matrices U ∈ Da×b,
V ∈ Db×c, W ∈ Dc×d can be written as a row

(V1 . . . Vb) · (UT ⊗W ), (19)



where V1, . . . , Vb are the rows of V and ⊗ denotes
the tensor product of matrices. We continue to use
single subscripts to denote the rows of a matrix.
Then, it is easy to see that (15) can be written as:

(R′1 . . . R′q′) = (S1 . . . Sp) (R′T ⊗R′)

+(V1 . . . Vq′) (Iq′ ⊗R).

We obtain the inhomogeneous system f T = g:

f = (S1 . . . Sp V1 . . . Vq′) ∈ D1×(p+q)q′

T =
(

R′T ⊗R′

Iq′ ⊗R

)
∈ D(p+q)q′×pq′

, (20)

g = (R′1 . . . R′q′) ∈ D1×pq′
. (21)

Algorithm 1. Input: R ∈ Dq×p, R′ ∈ Dq′×p.
Output: U ∈ Dp×p such that the D-module
h(M/t(M)) , π(D1×p U) is a direct complement
of t(M) in M , or ∅ if no such complement exists.
ComplementConstCoeff (R,R′)

Define T and g as in (20), (21).
G← Gröbner basis of the rows of T .
r ← Normal form of g modulo G.
if r = 0 then

From the reduction of g modulo G,
find f ∈ D1×(p+q)q′

s.t. f T = g.
Construct the matrix S from f :
Si,j ← f1,(i−1) q′+j , 1 ≤ i ≤ p, 1 ≤ j ≤ q′.
return U = Ip − S R′

else
There exists no solution of (15) ;; return ∅

endif

If now we consider the non-commutative Weyl
algebra D = K[x1, . . . , xn][∂1, . . . , ∂n], then, the
product U · V · W of matrices U , V , W can
no longer be written as in (19). If S ∈ Dp×q′

were given, (15) could be viewed as the problem
to factorize the matrix R′ − R′ S R′ as a prod-
uct V R with a suitable V ∈ Dq′×q. Assuming
Sij =

∑
k,l∈{0,...,d}n a

(i,j)
k xk ∂l with indetermi-

nates a
(i,j)
k , we derive a system of equations in

a
(i,j)
k that characterizes the above factorizability.

Algorithm 2. Input: d ∈ N, R ∈Dq×p, R′ ∈ Dq′×p.
Output: U ∈ Dp×p of order d such that the left D-
module h(M/t(M)) , π(D1×p U) is a direct com-
plement of t(M) in M , or ∅ if no such complement
exists.
Complement (R,R′, d)

Introduce the indeterminates λj , j = 1, . . . , p,
µi, i = 1, . . . , q, and a

(i,j)
k over D.

P ← {
∑p

j=1 Rij λj − µi | i = 1, . . . , q}.
Compute the Gröbner basis G of P in⊕p

i=1 D λi ⊕
⊕q

i=1 D µi ⊕
⊕

D a
(i,j)
k w.r.t.

an order which eliminates the λi’s.
Let Sij =

∑
k,l∈{0,...,d}n a

(i,j)
k xk ∂l.

X ← R′ −R′ S R′ ∈ Dq′×p; H ← ∅.
for i = 1, . . . , q′ do

Fi ← normal form of
∑p

j=1 Xij λj modulo G.
Augment H with all non-zero coefficients of

xk∂lλj in Fi for all 1 ≤ k, l ≤ n, 1 ≤ j ≤ p
endfor
Solve the linear system given by H for a

(i,j)
k .

if the linear system has a solution (ã(i,j)
k ) then

Plug all ã
(i,j)
k into S.

return U = Ip − S R′.
else

No complement of order d ;; return ∅
endif

See OreModules for implementations.

5. PARAMETRIZING ALL SOLUTIONS

Now, we only investigate the case where condition
(15) of Theorem 4 is fulfilled. Then, we have (13).
By applying the functor homD(·,F) to (14) and
(17), we obtain the commutative exact diagrams

0
↑

0 homD(t(M),F)
↑ i? ↑

Fq R.←− Fp ←− SolF (R) ←− 0
R′′. ↑ ‖ ρ? ↑
Fq′ R′.←− Fp ←− SolF (R′) ←− 0,

↑ ↑
0 0

0 0
↑ ↑

Fq′ R′.←− Fp ←− SolF (R′) ←− 0
V. ↑ U. ↑ h? ↑
Fq R.←− Fp ←− SolF (R) ←− 0,

↑ k? ↑
0 homD(t(M),F)

↑
0

where k : M −→ t(M) denotes the D-morphism
satisfying k ◦ i = idt(M). Then, we have:

SolF (R) = ρ?(SolF (R′)) ⊕
k?(homD((D1×q′

R′)/(D1×q R),F)).
(22)

SolF (R′) is called the controllable sub-behaviour of
SolF (R), whereas homD(t(M),F) cannot gener-
ally be interpreted as a sub-behaviour of SolF (R).
However, in the previous case,
k?(homD(t(M),F)) is a sub-behaviour of SolF (R)
which we call the non-controllable sub-behaviour.

From (22), it follows that computing SolF (R) can
be decomposed into two problems:



(1) Computing SolF (R′).
(2) Computing homD((D1×q′

R′)/(D1×q R),F).

Theorem 5. Let M ′ = D1×p/(D1×q′
R′) be a

torsion-free left D-module. Then, there exists a
matrix Q ∈ Dp×m such that we have the following

exact sequence D1×q′ .R′

−→ D1×p .Q−→ D1×m.

We refer to (Chyzak et al., 2005) for a constructive
proof and an implementation in OreModules.

Corollary 1. Let F be an injective left D-module.
With the hypothesis and the notations of Theo-
rem 5, we obtain the following exact sequence

Fq′ R′.←−− Fp Q.←− Fm, (23)

i.e., we have SolF (R′) = QFm. This result holds
for the D = R[∂1, . . . , ∂n]-modules F = C∞(Ω)
and D′(Ω) and an open convex subset Ω of Rn.

If we denote by θi the class of the ith row of R′

in t(M) = (D1×q′
R′)/(D1×q R), then {θi}1≤i≤q′

is a family of generators of the torsion submodule
t(M) of M (Chyzak et al., 2005). Then, for every
torsion element θi 6= 0, there exists a family
annD(θi) of non-zero elements of D satisfying:
∀ d ∈ annD(θi), d θi = 0. We refer to (Chyzak
et al., 2005; Pommaret and Quadrat, 1998) for a
description of the algorithm computing annD(θi).

If η ∈ Fp is a solution of R η = 0, then, we have
the following autonomous elements:

τi , R′i η ∈ homF (t(M),F), i = 1, . . . , q′. (24)

Lemma 2. Let us consider the left D-modules

M = D1×p/(D1×q R),M/t(M) = D1×p/(D1×q′
R′)

and R′′ ∈ Dq×q′
the matrix defined by R = R′′R′

(see Lemma 1). Then, we have:

(1) There exist L ∈ Dr×q′
and L′ ∈ Dr×q s.t.:

F , ker
(

.

(
R′

R

))
= D1×r (L L′).

(2) If ker(.R′) = D1×r′
T , then we have:

F = D1×r′
(T 0) + D1×q (R′′ − Iq).

If F is an injective left D-module, then τi defined
in (24) satisfy the following equivalent systems:

Lτ = 0⇔

{
R′′ τ = 0,

T τ = 0.
(25)

PROOF. 1 is satisfied as D is a noetherian ring.

2. Let us consider λ = (λ1 λ2) ∈ F . Then, we
have λ1 R′ + λ2 R = 0 and, using R = R′′R′, we
obtain (λ1 + λ2 R′′) R′ = 0, and thus, we have
λ1 + λ2 R′′ ∈ ker(.R′) = D1×r′

T . Then, there

exists µ ∈ D1×r′
satisfying λ1 = µT − λ2 R′′

implying (λ1 λ2) = µ (T 0)− λ2 (R′′ − Iq)

⇒ λ ∈ (D1×r′
(T 0) + D1×q (R′′ − Iq)).

The converse inclusion trivially holds proving 2.

Now, applying (L L′) to the left of the system

R′ η = τ, R η = 0, (26)

we obtain Lτ = 0. Applying the matrix
(

T 0
R′′ −Iq

)
to the left of (26), we obtain T τ = 0 and R′′ τ = 0.
The equivalences follow from the injectivity of F .

Using Ip = (Ip−S R′) + S R′, i.e., Ip = U + S R′,
for all η ∈ SolF (R), we finally obtain:

η = U η + S (R′ η) = U η + S τ,

Uη ∈SolF (R′), τ = (τ1 . . . τq′)T = R′ η,

τi ∈ homF (t(M),F), 1 ≤ i ≤ q′.

Theorem 6. Let F be an injective left D-module,
R ∈ Dq×p, M = D1×p/(D1×q R) and R′ ∈ Dq′×p

a matrix satisfying M/t(M) = D1×p/(D1×q′
R′).

If there exist S ∈ Dp×q′
and V ∈ Dq′×q satisfying

(15), then every element η ∈ SolF (R) has the form

η = S τ + Qξ, ∀ ξ ∈ Fm,

where Q ∈ Dp×m is a matrix as in Theorem 5 and
τ is a fundamental solution of (25) in Fq′

.

This result holds for the D = R[∂1, . . . , ∂n]-
modules F = C∞(Ω) and D′(Ω) and an open
convex subset Ω of Rn.
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