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1. INTRODUCTION

Consider the system
_x = f(t; x; �) = f1(t; x) + g(t; x)� (1)
� = h(t; x; u; �) = �(t; x; u)� (2)

where t � 0; x 2 Rn; u 2 Rr; � 2 Rd; � 2 Rm;
and m � d � r: The constant parameter vector
� contains parameters of the control allocation
model (actuator and e¤ector model), that will be
viewed as uncertain parameters to be adapted. As-
sume there exist a virtual control �c = k(t; x) that
uniformly exponentially stabilizes the equilibrium
of (1). Introducing an instantaneous cost function
J(t; x; u), the minimization problem

min
u

J(t; x; u) s:t �c � �(t; x; u)�̂ = 0 (3)

de�nes the nonlinear static control allocation
problem. Since � is an unknown parameter the
idea is to use an indirect certainty equivalence
adaptive control approach based on the estimate
�̂: The cost function J incorporates objectives
such as minimum power consumption and input
constraints (implemented as barrier functions).
Optimizing control allocation solutions have been
derived for certain classes of over-actuated sys-
tems, such as for aircraft and marine vessels,
(Enns, 1998), (Bu¢ ngton et al., 1998), (Sørdalen,
1997), (Bodson, 2002) and (Härkegård, 2002). The
control allocation problem is generally viewed as
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a static or quasi-dynamic problem that is solved
independently of the dynamic control problem
considering non-adaptive linear models � = Gu.
The main advantage of this is modularity and the
ability to handle redundancy and constraints.
In the present work we consider dynamic non-
linear adaptive optimal control allocation. Non-
adaptive nonlinear control allocation has been
recently studied using conventional nonlinear pro-
gramming methods (Johansen et al., 2004).
In (Johansen, 2004) a control Lyapunov func-
tion is used to derive an exponentially conver-
gent dynamic update law for u (similar to a
gradient/Newton-like optimization) such that the
control allocation problem (3) is solved dynam-
ically. It is shown that it is not necessary to
solve the optimization problem (3) exactly at each
time instant. It is shown that convergence and
asymptotic optimality of the dynamic control al-
location in combination with a uniform globally
exponentially stable trajectory-tracking nonlinear
controller guarantees uniform boundedness and
uniform global exponential convergence of the
system. One advantage of this approach is com-
putational e¢ ciency, since the optimizing control
allocation algorithm is implemented explicitly as a
dynamic nonlinear controller. Solving (3) explic-
itly at each sampling instant requires a compu-
tationally more expensive numerical solution of
a nonlinear program to guarantee optimality. In
the present work we extend the results and ideas
in (Johansen, 2004) with the introduction of set-
stability and adaptation in the control allocation
model.



2. PARAMETER ADAPTATION IN THE
ALLOCATION EQUATION

The �rst order optimality conditions for the La-
grangian

l(t; x; u; �; �̂) = J(t; x; u) + (�c � �(t; x; u)�̂)T�

de�nes local solutions to the optimizing control
allocation problem (3). The design of the opti-
mizing control allocation and adaptation laws are
based on the following adaptive optimizing control
Lyapunov function (aoclf)

V1(t; x; �; �̂; u; �) = �V0(t; x) +
1
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where

� = x� x̂ (5)
_̂x = f1(t; x) +A�(x� x̂) + g(t; x)�(t; x; u)�̂ (6)

� > 0 is an arbitrary constant, ~� = � � �̂ and
the design matrices satis�es A� = AT� > 0, Q� =
QT� > 0 and Q� = QT� > 0: The �rst term in (4)
contains the Lyapunov function inherited from the
exponential stable virtual controller:
Assumption 1. There exists a di¤erentiable func-
tion V0 : [0;1)� Rn ! R and positive constants
c1; c2; c3; c4 such that 8t � 0

c1 kxk2 � V0(t; x) � c2 kxk2

@V0
@t
(t; x) +

@V T0
@x

(t; x)f(t; x; k(t; x)) � �c3 kxk2@V0@x (t; x)
 � c4 kxk

The last term in (4) incorporates the �rst or-
der optimality condition for the Lagrangian as in
(Johansen, 2004). The second term is standard ex-
tension of the Lyapunov function for the certainty
equivalence approach (Krstic et al., 1995), while
the third term is introduced to make �̂ = ��̂ ! �;
such that � ! �c which will be shown to support
the convergence of ~� ! 0 as t ! 1: The time
derivative of V1 along the trajectories of the sys-
tem is given by

_V1 = �

�
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(t; x)f(t; x; k(t; x))
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(t; x)g(t; x)(�(t; x; u)� � �c) (7)

where
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We will show that optimization and adaptation
laws can be designed by the aoclf. For system (1-
2) we propose the following parameter update law
_̂
� = Q�1� �T� �

T
� (11)
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�
�� = g(t; x)�(t; x; u)

the certainty equivalent control allocation update
laws

_u = ���+ � + �0 (12)
_� = �W� + �+ �0 (13)

with � = �T > 0, W = WT > 0. � and � satisfy
the algebraic equation

�T � + �T�+ �0 = 0 (14)

where �0 = � + �T �0 + �T�0, and �0 and �0 are
de�ned by

(�0;�0) = �H�1
�
@2l

@t@u
;
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�
(15)
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1CA : For the pur-

pose of analyzing the prospects of the above con-
trol allocation, we write the closed loop dynamics
in the compact form

_z = F (z) (16)

where F (z) is given by (1-2), (5), (11-13), _p = 1;
p0 = t0, z = (p;x; �; �̂;u;�); (; ) is a column-
stacking operator and p is the time-state. By
introducing the optimal set

A = fz 2 Rq jG(z) = 0g (17)

where; G(z) =
�
x; �; ~�; @l@u ;

@l
@�

�
; the set-stability

analysis can be done in the same way as for a
time-invariant model.

We present the concept of set-stability through
de�nitions 1-6 from (Teel et al., 2002).

De�nition 1. The distance from a point z 2 Rq to
the set A �Rq is de�ned by

jzjA = inf fd (z; y) jy 2 Ag (18)

where d(z; y) can be any metric.

De�nition 2. The system (16) is said to be for-
ward complete if, for each z0 2 Rq the solution
z(t; z0) is de�ned on [0;1):

De�nition 3. A nonempty closed set A �Rq is
a forward invariant set for (16) if the system
is forward complete and 8z0 2 A the solution
z(t; z0) 2 A;8t � 0:

De�nition 4. The system (16) is said to be �nite
escape time detectable through j�jA, if a solution
z(t; z0) is right maximally de�ned on a bounded
interval [0; T ); then limt%T jz(t; z0)jA =1:



De�nition 5. For the system (16), the closed setA
is Uniformly Globally Stable (UGS) if the system
(16) is forward complete and there exists � 2 K1
such that, 8 z0 2 Rq

jz(t; z0)jA � �(jz0jA); 8t � 0

De�nition 6. For the system (16), the closed set
A is Uniformly Globally Asymptotically Stable
(UGAS) if it is UGS and for each R; " > 0 there
exists a T (R; ") > 0 such that, 8 z0 2 Rq

jz0jA � R; t � T ) jz(t; z0)jA � "

De�nition 7. A smooth Lyapunov function for
(16) with respect to a non-empty, closed forward
invariant set A �Rq is a function V : Rq ! R
that satis�es: i) there exists two K1 functions
�1 and �2 such that for any z 2 Rq; �1(jzjA) �
V (z) � �2(jzjA): ii) There exists a continuous and
positive semide�nite function �3 such that for any
z 2 RqnA: dVdz F (z) � ��3(jzjA):

Theorem 1. Assume system (16) is �nite escape-
time detectable through jzjA : If there exists a
smooth Lyapunov function for the system (16)
with respect to a nonempty, closed, forward in-
variant set A, then A is UGS with respect to (16).

De�nition 7 and Theorem 1 are found in (Skjetne,
2005).

Assumption 2. There exists constants %2; %1 > 0
such that 8t; x and u:

%1Id �
@�

@u
(t; x; u)

@�T

@u
(t; x; u) � %2Id (19)

Assumption 3. The function f is di¤erentiable and
satis�es f(t; 0; 0) = 0: Moreover, it is globally
Lipschitz, uniformly in t with Lipschitz constants
Lx and L� in x and � . The function � is twice
di¤erentiable and globally Lipschitz, uniformly in
t, with �(t; 0; 0) = 0 and Lipschitz constant L�
in x and u. The function k is di¤erentiable and
Lipschitz in x, uniformly in t, with k(t; 0) = 0.

Assumption 4. The cost function J is twice di¤er-
entiable.

Assumption 5. There exists constants k2 > k1 > 0

such that 8 t; x; u; � and �̂
k1Ir <

@2l

@u2
(t; x; u; �; �̂) < k2Ir (20)

Assumption 6. For all t; x; u; � and �̂; the set�
u; � 2 Rr+d

��� @l
@u ;

@l
@�

�
(z) = 0

	
is bounded.

Claim 1. The set A is a closed and forward
invariant set for the system (16).

Proof. From Proposition 1.1.9 b) in (Bertsekas
et al., 2003) we have that G : Rq ! RqG is
continuous i¤ G�1(U) is closed in Rq for every
closed U in RqG . From the de�nition of A, U =
f0g ; and since G is continuous (by assumption 2-
5), A is a closed set. The set is forward invariant
if at t1; G(z (t1)) = 0 and d(G(z(t)))

dt = 0 8t > t1
with respect to (16). We have G(z(t1)) = 0 )�
_x; _�;

_̂
�
�
= 0; by assumption 3 and equations

(1-2, 5 and 11), and (�; �; �; �) = 0 from (10-
9). It remains to prove
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�
then by inserting control law (12-13) we get�
d@l
dt@u ;

d@l
dt@�

�
= 0 and G(z(t; z(t1))) = 0 for all

t > t1; which proves the claim. �

Claim 2. The system (16) is �nite escape-time
detectable through jzjA.

Proof. G�1(0) is bounded by assumption 6 and
k�k1 < 1; and since all states except the time-
state p are represented linearly in (17), the system
(16) is �nite escape time detectable through jzjA.
�

Claim 3. There exist positive constants �1; �2 such
that
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k~uk2 +

~�2 + ~�2� (21)

Proof. The result follows by applying the same
procedure as in proof of Proposition 1 in (Johansen,
2004). �

The main results are summarized in the following
propositions.

Proposition 1. Consider the system (1-2), with
the update-laws (11-13), then
i) The algebraic equation (14) is always solvable,
and there exists a unique solution for � and �.
ii) There exists class K1 functions �1 and �2 s.t
�1(jzjA) � V1(z) � �2(jzjA)
iii) The setA is rendered UGS and

�
x; �; @l@� ;

@l
@u

�
!

0 as t!1

Proof. i) This follows from (� = 0 and � = 0)()
(�0 = 0) by lemma 1 and 2 in (Johansen, 2004).
ii) This follows from claim 3 and assumption 1.
iii) By inserting the update laws (11-13) and the
algebraic equation (14) into (7), we get

_V1 = �

�
@V0
@t
(t; x) +

@V T0
@x

(t; x)f(t; x; �c)

�
� �T��� �TW� � �TQ�A��

+ �
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(t; x)g(t; x)(�(t; x; u)�̂ � �c) (22)

then by following the same procedure as in
(Johansen, 2004)

_V1 � ��(c3 �M�) kxk2 � (�min(�)�
�M

�
) k�k2

� (�min(W )�
�M

�
) k�k2 � �min(Q�A�) k�k2



where M = max(L�L�c4%1
;
L�L

2
�c4�2
%21

); thus � > 0

and � > 0 can be chosen such that there exist
positive constants k3; k4; k5 and k6 satisfying

_V1 � �k3 kxk2 � k4
 @l@�

2 � k5  @l@u
2 � k6 k�k2

= ��3(jzjA) � 0 (23)

With V1 as the Lyapunov function candidate
Theorem 1 is satis�ed and the UGS property is
established. Thus G(z(t)) 2 L1: The convergence
result follows from

lim
t!1

Z t

t0

�3(jz(s)jA)ds � lim
t!1

Z t

t0

� _V1(z(s))ds

� V1(z(t0)) <1 (24)
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�
� K�3(jzjA) )�
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@u
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2 L2 where K = 1

min(k3;k4;k5;k6)
.

By the assumptions we also have _G 2 L1 since
z 2 L1. Thus according to Barbalat�s lemma,�
x; �; @l@� ;

@l
@u

�
! 0 as t!1: �

De�nition 8. A piecewise continuous signal ma-
trix � : R ! Rn�m is Persistently Excited (PE)
if there exists constants ;� > 0; such that
1

�

Z t+�

t

�T (�)�(�)d� � Im�m; 8t > t0 (25)

Claim 4.limt!1
R t
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2 Im�m
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~�dt <

1 8�1 > 0.
Proof. From Proposition 1 we have � 2 L2 andZ
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 dt <1 (28)

Integral (28) follows by inequality
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In addition to the integrals from above we will use
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which follows from Young�s inequality, 8�1 > 0.
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where K� > 0 de�ned by (27-28), thus
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since _�� 2 L1, the claim is proved. �

Proposition 2. If ��(t) is PE and the results from
Proposition 1 holds, then A is UGAS.

Proof. From Proposition 1 and de�nition 5, we
have

jz(t; z0)jA � �(jz0jA); 8t � t0 (29)
where � 2 K1: Fix R > 0 and " > 0: De�ne

 = �(R), ! = min

�

; ��1(")

	
and

�(z) = G(z)TG(z)�~�T ~�+~�T
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Note from claim 2 and Proposition 1, thatZ t0+T
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�(z(�; z0))d� � B

(30)
where B is given by ! and 
: De�ne T = 2B

1!1
;

where !1 and 1 are speci�ed later, and assume
that 8 jz0jA � R there exists t0 2 [t0; T ] such
that jz(t0; z0)jA � ��1("): Thus jz(t; z0)jA �
� (jz(t0; z0)jA) � �(��1(")) = " for jz0jA � R
and t � T + t0; which satis�es de�nition 6:
Suppose this assumption is not true, i.e., there
exists jz0jA � R such that jz(t0; z0)jA > ��1(")
8t0 2 [t0; T ]. Thus

! � jz(t0; z0)jA � 
 8t
0 2 [t0; T ]

which from (21) imply that there exist positive
constants !1; and 
1 such that

!1 � G(z(t0; z0))
TG(z(t0; z0)) � 
1 8t0 2 [t0; T ]

By introducing M = f1; 2; ::; qg, and I(ts) =
argmaxi

��Gi(z(ts; z0))��, we can construct a new
vector G"; by G

I(ts)
" (z(ts; z0)) = GI(ts)(z(ts; z0))

and G
MnI(ts)
" (z(ts; z0)) = 0. We use i = I(ts)

and since kG(z(t0; z0))k1 �
q

!1
q ; 8t

0 2 [t0; T ] we

have
��Gi"(z(ts; z0))�� >q!1

q . Since G is uniformly

continuous, there is a positive constant ts+1(
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q ): Hence,
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which implies that
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whereAG =

 
I2n�2n 0 0
0 �T� �� 0
0 0 I(r+d)�(r+d)

!
; 1 =�

!1min(;1)
4q � �1
1

2

�
and �1 is chosen to keep 1

strictly positive. ThusZ t0+T

t0

�(z(t; z0))dt >

t0+TX
s=t0

1!1 (ts+1 � ts) = 2B

which is a contradiction to (30). Since �(z(t; z0))
! 0 uniformly then from (21) we have that A
is uniformly globally attractive, and consequently
by applying the UGS property from Proposition
1, A is UGAS. �

Remark 1. If � is known (e.g. measured using
accelerometers), the � can be estimated directly
from the allocation model � = �(t; x; u)�.

Remark 2. If �� =
�
@lT

@u
@2l
@x@u +

@lT

@�
@2l
@x@� + �

TQ�

�
is used in the update law, then

_V1 � �c3� kxk2 � �T��� �TW� � �TQ�A��

+ 2�L� c4 kxk
 @l@�


+ 2�L� c4 kxk (L�u kuk+ L�x kxk)

~� (33)

and some local stability properties, dependent
on the system and virtual controller, may be
concluded (the proof is not included in this paper,
but the result is shown in the simulation example)

Remark 3. The matrices � > 0 and W > 0 may
be time-varying, without changing any theoreti-
cal properties, provided they are bounded away
from zero. Newton-like methods can therefore be
implemented by taking�

_u; _�
�
= �

�
HTH+ "Ir+p

��1
(�;�)

+ (�;�)
T
+ (�0;�0)

T (34)

where  > 0, " � 0 and (�;�) = H
�
@`
@u ;

@`
@�

�
are

time-varying.

3. SIMULATION EXAMPLE

The low-speed manoeuvring of an over-actuated
ship example, that is presented with non-adaptive
control allocation in (Johansen, 2004) is con-
sidered for the simulation studies in this work.
This example is based on (Lindegaard and Fos-
sen, 2003) and the scaled-model ship dynamics are
given by

_�e = R( )�

_� = �M�1D� +M�1(� + b) (35)
� = �(u)�

and the augmented integral action _�i = �e: The
position �e = (xe; ye; e) = (x�xd; y�yd; � d)
is the north, east positions and compass heading
deviations. Subscript d denotes the desired state.
� = (u; �; r) is the body-�xed velocities, surge,
sway and yaw, � is the generalized force vector,
b = (b1; b2; b3) is a bias due to wind and current
and R( ) the rotation matrix function between
body �xed and earth �xed coordinate frame. In
the considered model there are �ve actuators; the
two main propellers aft of the hull, in conjunc-
tion with two rudders, and one tunnel thruster
going through the hull of the vessel. !i denotes
the propeller velocity and �i denotes the rudder
de�ection. i = 1; 2 denotes the aft actuators, while
i = 3 denotes the tunnel thruster. This model can
be rewritten in the form (1) and (2):

x = (�; �e; �) ; � = (�1; �2)

� = (�1; �2; �3) ; u = (!1;!2;!3; �1; �2)

�(u) =

 
X1 +X2 0
Y1 + Y2 Y3
�13 l3;xY3

!
�13 = �l1;yX1 + l1;xY1 � l2;yX2 + l2;xY2
Xi = Ti �Di; Yi = Li

where the propulsion forces are de�ned by

Ti =

�
kTpi!

2
i !i � 0

kTni j!ij!i !i < 0

Li =

�
Ti(1 + kLni!i)(kL�1i + kL�2i j�ij)�i ; !i � 0
0 ; !i < 0

Di =

�
Ti(1 + kDni!i)(kD�1i j�ij+ kD�2i�2i ) ; ! � 0
0 ; ! < 0

The unknown parameter vector � represents
thrust loss. �2 is also related to the parameters
kTp3 and kTn3 in a multiplicative way. This sug-
gest that the estimate of �2 gives a direct estimate
of the tunnel thruster parameter. A virtual con-
troller �c that stabilizes the system (35) uniformly,
globally and exponentially for some physically
limited yaw rate is proposed in (Lindegaard and
Fossen, 2003) and given by

�c = �KiR
T ( )� �KpR

T ( )�e �Kd� (36)

The cost function used in this simulation is the
same as was used in (Johansen, 2004)

J(u) =
3X
i=1

ki j!ij!2i +
2X
i=1

qi�
2
i

j!ij � 18Hz; j�ij � 35 deg
k1 = k2 = 0:01; k3 = 0:02; q1 = q2 = 500

Consider a wind disturbance vector b = 0:05(1; 1; 1),
the design matrix A� = I9�9; the true parame-
ter vector � = (1; 1)T ; its update gain matrix
Q� = diag(1; 1) and the � error weight Q� =
diag(a; 105; 2 �105; 2 �104); a = 103 (1; 1; 1; 1; 1; 1) ;
and the parameter update law from remark 2: The
implementation of � and W was done according
to remark 3 where  = 1 and " = 10�9. The
simulation results are presented in the Fig. 1-4.
At t1 � 200 and t2 � 400 the parameter update



law are excited and the estimated parameters
converges to the true values. For di¤erent initial
conditions, it can be shown that �̂ 9 �; since �
may not be PE over a su¢ cient timespan for the
reference signals. With white noise perturbations
or harmonic references, � can be shown to be
PE for all t such that �̂ ! �. This is veri�ed
by simulations.
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Fig. 1. Simulation results - the solid lines repre-
sents positions while the dashed lines repre-
sents references
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Fig. 2. Simulation results - computed propeller
velocities by the allocation algorithm
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Fig. 3. Simulation results - computed rudder de-
�ection by the allocation algorithm

Fig. 4. Simulation results - the parameter adap-
tion
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