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Abstract: Following CARTIF motors Group previous works, this paper proposes a new 
application for parameter online estimation for induction motors, which is used in a 
model-based fault diagnosis. The induction motor is described by non-linear differential 
equations and an Extended Kalman Filter (EKF) estimates three parameters (rotor 
resistance, stator resistance and magnetizing inductance). The diagnosis system 
proposed here is a parity equations scheme for sensor faults and multiplicative faults 
using parameter estimation. Reconfiguration of Kalman Filter is used to achieve 
acceptable control conditions when a sensor fault exists. Experimental results on a Field 
oriented controller (FOC) with 5.5kw motor are presented. Copyright © 2005 IFAC 
�

Keywords: Induction motors, Extended Kalman Filter, Fault diagnosis, Fault isolation, 
Control oriented models. 
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1. INTRODUCTION 
�

Nowadays, induction motors are widely used in 
industry because they are cheaper than DC motors. 
Though the electromagnetic conversion is described 
by non-linear equations this is not an inconvenience 
because the mathematical model of the AC motor is 
well known (Leohnard, W. 1996; Sen, P. 1989; 
Krause P. et al 1986). 
 
Recently, there has been an increasing interest in non-
linear model-based diagnostic techniques. In the 
induction motor, research has developed non-linear 
parity equations for parametric faults diagnosis 
(Arnanz et al 2000; Getler J. 1998; Getler J. and 
Yongtong H. 2000; Patton R. J. 2000), multiple 

model fault-tolerant systems for sensor faults (Chen, 
J. and Patton, R.J. 1999) and AI techniques (Pacheco, 
M.A. et al 2001; Zamora, J.L. et al 2000; Filippetti, F. 
et al 2000). In this paper two methods are used. 
Residuals based on the MIMO model Parity Equation 
Implementation for sensor faults and parameter 
estimation for the detection of changes in the physical 
parameters of the motor 
 
A model that consists of five state-variables: three 
measurable variables (stator currents and speed) and 
two non-measurable variables (rotor currents) have 
been used. The parameters need to be estimated via a 
non-linear estimator. The Extended Kalman Filter is a 
popular method to observe non-measurable variables 
and estimate physical parameters. (Eltabach M. et al 
2002, Ouhrouche M.A. 2000, Hajiyev C. M. 1999, 



Lapeyre, F. et al 1997; Grover, R. and Hawng, P. 
1985). Therefore, three variables  {Stator Resistance  
Rotor resistance and Mutual Inductance} are included 
in the filter. This identification is used for the fault 
detection algorithm (Mendoza A. et al 2004; Bacher 
S. et al 2001; Bacher S. et al 2001b; Moreau S. et al 
1999) and the implementation of the motor model on 
the rotor-flux-oriented control (FOC) of the induction 
machine. In this method, a good estimation of the 
parameters allows a marked improvement in the 
performance. A reconfiguration of the system is used 
in order to overcome sensor faults. 
  
In this paper, section 2 reviews the model of the 
induction motor used for a FOC system. An EKF-
based estimation is presented in section 3 and section 
4 shows the diagnosis system. In section 5, the results 
of the residuals evolution and reconfiguration of the 
Kalman filter when a sensor fault appears are shown.  
 
�

2. STATE EQUATIONS OF THE MOTOR 
�

�

A fourth-order state-space model defines the 
relationship between stator and rotor currents and 
voltages. Thus, the three-phase system is linearly 
transformed into two orthogonal axes (a,b) using a 
time-invariant matrix and stator-fixed reference 
frame. Therefore, all variables are referred to the 
stator. Finally, the mechanical features of the motor 
are represented by a second-order system. The state 
variables of the induction motor are the rotor and 
stator currents (1), and the speed. The inputs are the 
line voltages and torque (2). 
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The model equations can be expressed as follows: 
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with output vector (4)   
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Where: 
Ls=Ls1+Lo 
Lr=Lr1+Lo 
Ls Lr  Stator and rotor inductance. 
Ls1 Lr1  Stator and rotor auto-inductance. 
Rs  Rr  Stator and rotor resistance 
Lo : Mutual inductance  
TL: Mechanical shaft torque,  
J: Combined rotor and mechanical load inertia. 
�:  Rotor angular speed. 
p: number of pole-pairs 
fr: friction factor 
�: rotor angular    
 
 
In this case, the system control model [14] is 
formulated in the reference frame fixed to the rotor 
flux-linkage space-phasor. There are many ways to 
obtain the stator voltage equations in this reference 
frame.  The rotor magnetizing-current space-phasor 
(Imr) is obtained by dividing the rotor flux-linkage 
space-phasor established in this reference frame (�r�r) 
by the mutual inductance (Lo). (5) 

0L
I rr

mr
�

�
�                           (5) 

Resolving rotor voltage equations formulated in this 
reference frame, in its real and imaginary axis 
components, the following two axis differential 
equations are obtained for the stator currents. (6). 
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Isx, Isy, are the stator current formulated in the rotor 
flux oriented reference frame. 



Wmr, is the rotor magnetizing current space phasor 
speed with respect to the direct axis of the stationary 
reference frame. 
Tr rotor time constant. 
 
The expression for the electrical torque Te in this 
reference frame is shown in 7. 
 

Isyr
Lr

oLpTe ·Im
2
3 2

�                     (7) 

 
3. ON LINE PARAMETER ESTIMATION 

 
The Extended Kalman Filter (EKF) is the most 
popular algorithm for estimating physical parameters 
together with state variables. However, it is well 
known that in the induction motor model, it is not 
possible to identify all parameters.(Besacon G. 2001) 

It allows the state-vector to be extended with three 
variables (Rs, Rr and L0).  

 Finally the state-vector is formed by eight variables 
(8):  
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The model must be linearized with respect to the 
estimated extended state (9).    
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Where the process W and measurements V noise 
vector are assumed to be gaussian and characterised 
by mean null. 

With kkk xxx �� ˆˆ  as the estimation error and with 
the following Jacobian matrices �fxk y �hxk (10)  
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the extended Kalman filter equations are (11): 
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where Q and R are the process and the measurement 
covariance matrices respectively. Zk is the 
measurement and I the identity matrix.  
The Runge-Kutta method (Mathews J. and Fink K. D. 
1999 ) has been used to solve the discrete-time model 
of the motor in the equation (10).  
As the correct matrices Q and R cannot be chosen 
based on classical theories, they are usually tuned 
experimentally by a trial-and-error method.  
 

4. FAULT DETECTION METHOD 
 
A classical scheme implemented for diagnosis based 
on an EKF can be seen in figure 1. The new scheme 
incorporates parity equations and parameter 
estimation blocks. In this implementation, parameter 
estimation and fault detection are feedback on the 
control system based on a FOC algorithm.   
 
 

Fig. 1. Scheme of diagnosis and control System. 
 
Two methods are used for fault detection. Parity 
relations are rearranged directly from input-output 
model equations for sensor faults and, on the other 
hand, changes of the electrical parameter associated 
to short circuits in the winding and broken rotor bars. 
(Mendoza A. et al, 2003; Moreau, S. et al 1999) are 
detected and isolated by parameter estimation. 
 
We consider the follow faults:  
 Additive faults  
   Current sensor  
  Velocity sensor 
 
 Multiplicative faults  
  Changes in the parameters 
 
4.1 Residual generation 
 
Residuals are obtained from the state-space model. 
The model equations are written using a reference 
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frame fixed to the stator, applying the Clarke 
transformation (12). It is analogous for rotor currents 
and voltage.  
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Primary set residuals are obtained by simple 
comparison of each of the discretized state equations, 
(resy1, resy2, resy2, resw) and resy0 is a general 
result obtained for balanced power systems. (13) 
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One more residual is defined for the mechanical 
equation. (14)  

� �rbsarasbl iiiipoLwfrMresmec ˆ·ˆˆ·ˆ
·2
·ˆ·3

· ����
    

                                                                               (14) 
 
4.2 Parameter estimation 
  
Parameter estimation based on on-line identification 
is a natural approach to the detection of parametric 
faults. (Xiang-Qun, L. et al 2000;  Attaianese, C. et al 
1998) This allows the fault size to be measured 
independently of the operation point. 
 

5.RESULTS 
 
The motor bench is composed of two AC motors of 
5.5 Kw placed one in front of the other with an elastic 
coupling.  
 

 
Fig. 2. Motor bench 

The motor bench is shown in Figure 2. It is composed 
of two motors. The first is the motor used in our 
research.  The second acts as the load. A commercial 
ABB inverter controls this motor. The load torque can 
be selected in the control panel of the inverter, adding 
a chopper card to it and a group of resistors that act as 
a release for the absorbed energy of the load motor 
working in the fourth quadrant (positive speed and 
negative torque). 
 
The Motor Parameters used are: 
 

5.kW 
Frequency=50 Hz. 

Rs=1.15 Ohm 
Rr=0.95 Ohm 
Ls1= 0.0052 H 
Lr1= 0.0028 H 

L0=0.18 H 
J =0.225 kg*m^2 

 
The hardware used consists of an RTI real time 
control and acquisition card installed (DSPACE) in a 
Pentium II 450 MHz personal computer. The 
sampling time is 0.00015 s. 
 
This hardware is programmed via Simulink using the 
standard Simulink blocks and a special toolbox, 
named RTI, which includes special Simulink blocks 
to manage input-output channels, generate PWM, 
manage the encoder etc... 
 
5.1 Sensor faults. 
 
 Figure 3 shows a situation with a broken 
current sensor in R-phase.  Residuals resy1 and resy0, 
allow this fault to be isolated.   
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Fig. 3. Residual evolution (resy0, resy1, resy2, resy3) 
 
This result can be generalised for S and T phases, 
where residuals resy2 and resy3 respectively allow 
these faults to be isolated. A good detection of a 
broken sensor or biased sensor has been obtained. 
The remaining residues are not modified. 
 
Similar results are obtained for a speed sensor fault. 
In figure 4, residual evolution (resw and resmec ) is 
shown for this situation. The residue resw is the only 
one that is modified when the failure appears in the 
speed sensor.  
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Fig. 4. Residual evolution (resy0, resy1, resy2, resy3) 
 
 
Table 1 is the incidence matrix. The diagnostic 
structure is sensible and strongly isolates all sensor 
faults.  
 

Table 1 Residual values for additive faults. 
 
 RESIDUE 

         FAULT resy0 resy1 resy2 Resy3 resw resmec 

Phase R Current sensor 1 1 0 0 0 1 
Phase S Current sensor 1 0 1 0 0 1 
Phase T Current sensor 1 0 0 1 0 1 
Speed sensor  0 0 0 0 1 0 
 
5.2 Decision module 
 
When a fault occurs on the controlled motor, the 
parameters and state variables observed with EKF 
have unreal values and the system finally becomes 
unstable. For this reason, it is important to 
reconfigure the system to maintain the motor’s good 
performance.  
 
5.2.1 Speed sensor fault 
 
When the speed sensor fails, the Extended Kalman 
Filter is substituted for a Kalman Filter that does not 
include the motor parameters (Rs, Rr and Lo) in the 
state vector.   It allows the control conditions to be 
improved, but the FOC is not able to update with the 
estimated Kalman Filter parameters. 
 

Fig. 5. Evolution when a fault appears at time 6s.  
a)  Reconfiguring Kalman Filter b) Without 
reconfiguring Kalman Filter.   

In this case, the Kalman Filter is only used as a speed 
observer. In figure 5, a speed measurement fault with 
a 20 rpm bias is provoked at time 6s.  
 
Figure 5.a) shows the speed when the fault is not 
detected. The control system uses a bad speed 
measurement, and finally the motor runs with a speed 
deviation. In figure 5.b) the fault is detected and a 
Kalman Filter is used as a speed observer. The motor 
achieves a speed reference, although the speed sensor 
gives an erroneous measurement.  
 
5.2.2 A current sensor fault 
 
In this case, when a current sensor fault exists, it 
makes the speed estimation worse. When the 
diagnosis system detects and isolates the faulty 
sensor, its signal is calculated with the other current 
measurements using Ir+Is+It=0. It is valid because 
the motor is connected on star without neutral 
connection 
  
In table 2, the estimated speed variance is shown. It is 
reduced when the Extended Kalman Filter uses a 
calculated current measurement in the fault situation. 
When the fault is isolated, the reduction in the value 
of the estimated speed variance is greater than 50%. 
 

Table 2 Speed estimated variance values  
 

State of Motor State diagnosis 
System 

Estimated Speed 
Variance 

Good condition. No fault 58.97 
R current sensor fault No fault 711.99 
R current sensor fault Isolated Fault 303.74 
 

Fig. 6. Detection and Isolation Time when a fault 
occurs.  
 
It is well known that the detection and isolation time 
is a fundamental characteristic of every diagnosis 
system to guarantee good performance. When a fault 
appears, especially if the diagnosis is used in the 
control system, a compromise between false alarms 
and decision time will be necessary.  (Patton 
93)(Patton 97) 
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In figure 6, the evolution of speed is shown. The fault 
takes place at  time 6 seconds. Then, detection and 
isolation algorithm needs about 1.2 seconds to 
diagnose the fault. Just after diagnosis is carried out, 
the reconfiguring system based on Kalman filter is 
activated.  
 

6. CONCLUSIONS. 
 
Following CARTIF motors Group previous works, an 
extended Kalman Filter has been used simultaneously 
in two fields: control and diagnosis. Parameter 
estimation is used in the FOC and parity equations are 
used as a residual generator. In addition, a decision 
module is used to reconfigure the Kalman Filter. It 
allows an acceptable performance of the motor when 
a sensor fault occurs.  The method has been tested on 
a real A.C. motor, obtaining good results. 
 
Future work will include an active fault tolerant 
control based on the diagnosis information and on-
line parameter estimation, of the whole converter-
motor plant. 
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