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Abstract: The Generalized Voronoi Graph (GVG) has been effectively used for the SLAM
and navigation of mobile robots. Since the mobile robot should perform the GVG-based
SLAM and navigation in unstructured environments using inaccurate noisy sensors, it
requires accurate data association and robust navigation techniques. In this paper, we
suggest three techniques for a robust construction of the GVG. The first one is a robust
node matching technique and the second one is an adaptable sensor area matching
method for the robust exploration. Finally we propose a technique which is capable
of distinguishing between closely located nodes. The simulation results show that the
proposed algorithm can work successfully under 20% errors of odometry and range sensor
in unstructured environment.Copyrightc©2005 IFAC
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1. INTRODUCTION

The Generalized Voronoi Graph (GVG) is an efficient
tool for the SLAM (Simultaneous Localization and
Mapping) because of its embedded navigation capa-
bility and computational efficiency. For that reason,
several GVG-based SLAM algorithms have been suc-
cessfully implemented (Choset and Nagatani, 2001;
Nagatani and Choset, 1999; Dohet al., 2003).

The GVG consists of nodes and edges. The nodes
are topologically meaningful places such as junctions,
corners, doors, etc., and the edges are connections
between nodes. The GVG-based SLAM algorithms
re-localize a robot on the node. Thus the key factor is
a data association which matches a current node with
a set of known nodes.
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An ideal data association algorithm for the GVG-
based SLAM should meet the following four condi-
tions. First, the algorithm should use cheap sensors
such as ultrasonic sensors, odometry for economical
aspects. Second, the algorithm should work even in
real unstructured environment. Third, the algorithm
should reject a weak node efficiently. Here the weak
node is a node that needs to be discriminated as
edge but sometimes is falsely detected as a node be-
cause of its structural property as shown in Fig. 1(a).
Fourth, the data association algorithm should be capa-
ble of distinguishing closely located nodes as shown
in Fig. 1(b).

However, upon the author’s knowledge, there seems to
be no established result which satisfies above four ne-
cessities because of poor ability of sensors. In (Choset
and Nagatani, 2001), an algorithm which covered
about230m2 using ultrasonic sensors and odometry
is proposed. Their approach, however, was performed
in well structured environment. And a Multi Layered
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Fig. 1. (a) A weak node and (b) Two nodes are located
very closely. Data association with these nodes
during the GVG navigation is very difficult.

Fig. 2. Large uncertainty and low resolution of cheap
sensors

Data Association (MLDA) for robust data association
was suggested (Dohet al., 2003), but they used a laser
range finder which costs more than $5,000 and the
weak node rejection was not implemented.

In this paper, we propose three techniques that per-
form the data association that satisfies aforementioned
necessities. First, we suggest a Local Occupancy Grid
Map (LOGM) at the node. This is a fusion of metric
and topological map. The LOGM is constructed by
sensor scans on the node, and it can reject sensor noise
coming from poor sensing ability of cheap sensors.
The LOGM provides rich information of the node with
less noise, and gives robustness to the data association
algorithm, in return. The LOGM addresses the first
necessity using cheap sensors.

Second, we suggest the weak node (Fig. 1(a)) rejection
algorithm via sensor area matching method. And the
algorithm can be adaptively performed for various
environments. The sensor area matching algorithm
can reject various weak nodes induced in unstructured
environment. And its adaptiveness gives robustness,
and this enhancement addresses the second and third
necessities improving robustness in the unstructured
environment and adaptive weak node rejection.

Third, we provide a discriminant technique for the
closely located nodes (Fig. 1(b)). Those closely lo-
cated nodes are distinguished by using the constructed
LOGM image and the MLDA (Dohet al., 2003). This
technique addresses the final condition that the closely
related nodes should be distinguished.

Simulations were performed for a robot with 36 range
sensors in unstructured environment. A Gaussian er-
ror, N (0,σ2), whose2σ corresponds to 20% of the

Fig. 3. Circular occupancy grid

odometry and the range errors, is added to the real
odometry and the real range sensor data.

This paper is organized as follows. In section 2, we
present robust node matching technique. And adaptive
sensor area matching method is explained in section 3.
Then section 4 presents a technique about closely lo-
cated nodes detection. In section 5 we show simulation
results and conclusion follows in section 6.

2. ROBUST NODE MATCHING TECHNIQUE

If we use cheap sensors, its characteristic of low
resolution and noisy signal is shown as Fig. 2. In this
section, we describe a Local Occupancy Grid Map
(LOGM) scheme for the robust data association of
the GVG-based SLAM. Here the LOGM performs to
cover the defects coming from cheap sensors such as
low resolution and noise.

2.1 Local Occupancy Grid Map (LOGM)

To describe node information and to apply it to data
association, we use the most common mapping tech-
nique based on the occupancy grid map (Elfes, 1989).
Instead of building metric grid map for entire space,
we adopt it only at the node. Moreover we newly
propose a circular grid to construct the LOGM. The
circular grid is divided by cells (r = 10cm, θ = 30◦)
as shown in Fig. 3. The areal size of each cell is equiv-
alent and the center of the circular grid is located on
the node position.

The proposed circular grid can describe environmental
information in two different scales: sparse grid near
the robot and dense grid around obstacles. The prop-
erty of the different grid scale is appropriate for the
description of information on the GVG node. And the
circular grid can be constructed intuitively and directly
from range sensor data.

Then, we choose a probabilistic sensor model as the
shape of an arc in (Konolige, 1997). When the robot
arrives at a new node, the sensor model is applied and
the LOGM at that node is created by the Bayesian
procedure as follows (Elfes, 1989):

P(s(Ci) = OCC|{r}t+1)

=
p[rt+1|s(Ci) = OCC]P[s(Ci) = OCC|{r}t ]

Σs(Ci)p[rt+1|s(Ci)]P[s(Ci)|{r}t ]
,

(1)
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Fig. 4. Local Occupancy Grid Map (LOGM) on the
GVG nodes

wheres(Ci) is state ofith cell of the LOGM (Occupied
or Empty) and{r}t is range data at time t.

Initially 0.5 (likely to be occupied or free) is equally
assigned to the probability of occupancy grid cell.
When the robot revisits a node through navigation, the
LOGM is updated sequentially by (1). Consequently
we can obtain a circular gray-scale image via the
probability of the LOGM as shown in Fig. 4.

2.2 Maximum Likelihood LOGM Matching

As mentioned previously, we can think that the robot
captures LOGM images on every node of the given
environment. Here we want to know a degree of dif-
ference between two given LOGM images.

For robust node matching, the robot compares a cur-
rent node image with node images obtained from prior
navigation. For that purpose, we use an image match-
ing method in terms of Maximum Likelihood (ML)
estimation (Olson, 2002). It can be implemented by
both edge template matching and gray-level image
matching.

From edge and gray-level information, we seek the
template LOGM imagej in a way that maximizes
the likelihood of the difference measurement given all
available data as follows:

j = argmax
j

p( j|E j ,G j ,Current LOGM) (2)

whereE j andG j means the edge and gray-level dif-
ference betweenCurrent LOGMand template LOGM
j, respectively. This comparison will take place with
finite number, since we adopt the LOGM only at the
possible nodes.

For the data association using the LOGM, we adopt
the Multi Layered Data Association (MLDA) scheme
(Doh et al., 2003) which uses as many reliable data
as possible for data association. The MLDA handles
not only deterministic data of essential graph structure
but also probabilistic data of accurate odometry and
sensor scan.

From a set of constructed LOGMs, we can find that
each of them represents local information at the node.

(a)

(b)

Fig. 5. Problematic nodes in an unstructured envi-
ronment : (a) a weak node and (b) a node with
meaningless local minima

Fig. 6. Sensor area matching method based on thresh-
old area,Athres

Because there exists no consistency between the local
grids (Duckett and Saffiotti, 2000), we can use the
LOGMs on-line by the robot for self node matching.
Therefore, by using this ML and a Multi Layered
Data Association (MLDA) (Dohet al., 2003), we can
effectively perform data association for node points.
The results will be shown in section 5.

3. ADAPTIVE SENSOR AREA MATCHING
METHOD

In this section, we provide a weak node rejection algo-
rithm via the adaptive sensor area matching method.

3.1 Accounting for Sensor Area Matching Method

When a robot navigates an unstructured environment,
the weak node, which is essentially an edge but some-
times detected as node (Fig. 5(a)), and meaningless
local minima (Fig. 5(b)) will increase ambiguities of
data association.

A sensor area matching method can effectively reduce
above two problems in the unstructured environment.
To describe the method briefly, let us assume that an



Fig. 7. Adaptable sensor area matching method

equidistant local minimum of range data isL. Then we
can define sensor area as the shaded area between two
local minimaL as shown in Fig. 6. We can filter weak
nodes and meaningless local minima whose sensor
area between the local minima pair is smaller than a
preset threshold, Athres as shown in Fig. 6.

3.2 Adaptive Sensor Area Matching Method

However, the sensor area matching method is very
sensitive to Athres. Accordingly two undesirable cases
can be induced by the sensitivity. First, if a map
consists of weak nodes whose sensor area is close to
the preset threshold, Athres, the sensor area matching
method won’t work. Second, if we set unreasonable
Athres (too high or small), the sensor area matching
won’t be successful.

Therefore, for highly robust data association, sensor
area threshold should be adaptively selected. For that
reason, we propose a technique named anadaptive
sensor area matching method.

To explain this technique, firstly, we denote the dis-
tance of the equidistant local minimum of range sensor
data asLi . Also we denote the angle and the width
between local minimum pair asθi andwi , respectively.
Then, we can obtain anunit sensor area threshold,
Ai (shaded area in Fig. 7) fromLi andθi of the local
minimum pairs. After that, we can define the sensor
area threshold asAthres = nAi where n is the number
of unit sensor area threshold. Upon the various trials
via simulation, we found thatn = 3 shows the best
performance.

As aforementioned, the unit sensor area,Ai is a func-
tion of local minimum distance of current sensor data.
When the robot meets an environmental change (i.e. a
width change of the corridor, etc.), the unit sensor area
is adaptively selected by the current sensor data.

By applying this technique, the robot can adap-
tively choose threshold value for sensor area matching
method based on the current sensor data. And it makes
the robot to navigate an unstructured environment ro-
bustly and consistently.

(a) (b)

Fig. 8. Extraction of the GVG edges and nodes (a)
acquired local occupancy grid map (b) extracted
edges and nodes after image processing

Fig. 9. Detecting the GVG nodes by checking 8 neigh-
bor of pixels on the LVD edge

4. DISCRIMINATING TECHNIQUE BETWEEN
CLOSELY LOCATED NODES

Different nodes were associated in section 2 and weak
node was rejected in the previous section. However,
if two nodes are closely located, it is not easy to
discriminate these nodes. In this section, we suggest
a technique to distinguish between neighbor nodes
located closely for the robust GVG navigation.

4.1 LVD Extraction from the LOGM image

A Local Voronoi Diagram (LVD) is a locally gener-
ated Voronoi Diagram which is the locus of points
equidistant to two or more obstacles. Two closely lo-
cated nodes can be closed distinguished in the LVD,
and the Local Occupancy Grid Map (LOGM in section
2) provides good information for the LVD extraction.

To extract the LVD, we choose a skeletonization
algorithm based on the Zhang Suen-Stentiford-Holt
combined algorithm (Parker, 1997). Firstly, we ap-
ply binary transformation and Stentiford’s boundary
smoothing method to the LOGM image as a pre-
process. Then Zhang-Suen thinning algorithm using
Holt’s variation makes a skeletonized image as a LVD
from the original LOGM image (Fig. 8).

After that, the image is post-processed by staircase
removal algorithm. Then, to find nodes of the pro-
cessed LVD image, we should check 8 neighbor of
all pixels which are located on the LVD as shown in
Fig. 9. Consequently, we can exactly find all nodes
contained in the given LOGM image by using the
proposed technique.



4.2 Modified Multi Layered Data Association

The Multi Layered Data Association (MLDA) scheme
in (Doh et al., 2003) conducts a data association pro-
cess into two step: deterministic and probabilistic data
process. If we modify the probabilistic data process
in the MLDA slightly, it can cope with a situation to
distinguish between closely located nodes.

To modify the MLDA scheme, we induce the Maha-
lanobis distance between two nodes by using mean
node position and its covariance from odometry. The
procedure of the probabilistic test parts for the modi-
fied MLDA is as follows:

Modified MLDA Algorithm

for all the nodes{
• The deterministic test as follows:

· Checking the number of edge of the nodes.

· Checking the relative angles between the edges.

· Checking the types of nodes (boundary, junction, etc.).

• The probabilistic test as follows:

· Calculate the Mahalanobis distance, LM from Ncur

· If L M < Lthres,

then using the probability of reliable odometry

else using the probability of reliable sensor scan

}
Algorithm end

Here, Ncur and Lthres represent current node and dis-
tance threshold, respectively.

5. SIMULATION RESULTS

In previous 3 sections, we proposed three robust navi-
gation techniques for the robust data association of the
GVG-based SLAM in unstructured environment. We
evaluated the performance of the proposed algorithms
through the following simulations in unstructured and
corridor-like environments. All the simulations were
performed for a robot with 36 range sensors (10◦
angular resolution) in unstructured environments. A
Gaussian error,N (0,σ2), whose2σ corresponds to
20% of the odometry and the range, is added to the
real odometry and the real range sensor data.

5.1 Unstructured Environment

Firstly, we applied the proposed algorithm to an
unstructured symmetric environment as shown in
Fig. 10. The map is given by a bitmap image repre-
senting a3.7km×3.7kmenvironment with 240 GVG
nodes. The unstructured environment has many can-
didates that match to the current node because every
place looks similar and has less topological features.

In Fig. 11, the plot shows a simulation result of robust
data association using cheap sensors in the given en-
vironment (Fig. 10). It presents the percentage of suc-
cessfully matched node versus odometry uncertainty.

Fig. 10. An unstructured environment
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Fig. 11. The percentage of successfully matched node
versus odometry uncertainty under 20% range
sensor error within 2σ bounded uncertainty in
unstructured environment(Fig. 10).

This result indicates that the robot can successfully
navigate the unstructured environment under 20% un-
certainties of odometry and range sensor.

5.2 Corridor-like Environment

We applied the same algorithm to a corridor-like envi-
ronment which has closely located nodes and places
with similar sensor scan. Fig. 12 represents a result
of complete mapping of the given environment. The
proposed algorithm identified 69 nodes accurately and
the path navigated by the robot is about1,600m.
In Fig. 12 and 13, the points with number mean the
acquired nodes of the Reduced GVG (Nagatani and
Choset, 1999).

From the simulation result of complete exploration,
we can confirm that one of the proposed schemes,
adaptive sensor area matching method is useful for the
incremental construction of the GVG in the unstruc-
tured environment like a corridor. It makes the robot
to navigate robustly the given environment without
suffering problematic landmarks like weak nodes.

Also we can verify the performance of the suggested
data association using Local Occupancy Grid Map
(LOGM) matching and it can solve the problem of
closely located nodes through robust data association
as shown in Fig. 13. It means that node match can be
accomplished efficiently and robustly in unstructured
environmental situations using the proposed method.
Finally, Fig. 14 shows a histogram of the matching er-



Fig. 12. Simulation result of a unstructured corridor-
like environment

Fig. 13. A partially magnified map of Fig. 12 to
show discriminant ability between closely lo-
cated nodes

ror rate between two LOGMs and the decision bound-
ary for probabilistic data association using LOGMs.

6. CONCLUSION

This paper addressed a robust data association and
navigation techniques for the GVG-based SLAM in
unstructured environment.

For that purpose, we suggested three techniques: (1)
Robust node matching technique using Local Occu-
pancy Grid Map (LOGM) (2) Adaptive sensor area
matching method for robust GVG-based navigation
(3) Discriminating technique between closely located
nodes.

These three techniques can achieve robust data associ-
ation and navigation in a way that the robot navigates
an unstructured environment using cheap sensor as
follows.

First, we adopted metric grid map only at the node
point to enhance the data association capability. This
algorithm makes data association more robust. Sec-
ond, we enhanced the weak node rejection algorithm
via the adaptive sensor area matching method. It per-
ceives the environmental changes and improves ro-
bustness in the unstructured environment. Third, we
provided a discriminant technique for the closely lo-
cated nodes. Those closely located nodes are distin-
guished by using the constructed LOGM image and
the modified MLDA.

Fig. 14. A histogram of matching error rate between
two LOGMs when the robot navigates the given
environment (Fig. 12). It shows that the capabil-
ity of the maximum likelihood matching process.

We integrated these techniques and were able to eval-
uate their robustness on the data association and nav-
igation through simulations. From the simulation re-
sults, we can confirm that the proposed algorithm is
suitable to the efficient navigation with robustness.
In simulation, the robot successfully mapped an un-
structured and a corridor-like environments under a
condition that a Gaussian error,N (0,σ2), whose2σ
corresponds to 20% of the odometry and the range, is
added to the real odometry and the real range sensor
data.
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