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Abstract: A high gain observer is proposed for a class of multi-output nonlinear systems
with unknown inputs in order to simultaneously estimate the whole state as well as
the unknown inputs. The gain of this observer does not require the resolution of any
dynamical system and is analytically given. Moreover, its tuning is reduced to the choice
of two real numbers. The performances of the proposed observer are demonstrated in
simulation through an illustrative exampBapyright(©) 2005 IFAC
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1. INTRODUCTION server for the simultaneous estimation of the non mea-
sured states and the unknown inputs. The proposed ap-

proach does not necessitate the output differentiation
Over the last twenty years, many researches have fo-

d he ob desian for i . hand it only assumes that the dynamics of these inputs
cused on _t e observer design for linear systems With, .o 6 nded without making any hypothesis on how
unknown inputs (Johnson, 1975; Kudetal, 1980;

: ) . _ these inputs vary.
Hou and Miller, 1992; Guan and Saif, 19911 Darouach This paper is organized as follows. In the next section,
et al, 1994). In most cases, the objective was to

. h d bl g hthe class of nonlinear systems which is the basis of
estimate the non measure sta’Fe variaples an _t &he observer design is introduced. Section 3 is devoted
proposed observers do not provide any information to the observer synthesis. For sake of clarity, only

o(r; tTe unkndov_l\_/n ng;s 'R a reftwely recen;cj paE&rl relevant results are given and corresponding proofs are
(Corless and Tu, ), the authors proposed a reported in appendices. Section 4 is devoted to a sim-

pased observer in order to Jqlntly estimate the miss- ulation example in order to highlight the performance
ing s_tgtes and the unknown inputs. However, strong ?f the proposed observer.

conditions are assumed to ensure the convergence o

the inputs estimates. In a more recently paper (Xiong

and Saif, 2003), the authors proposed reduced order

observers to simultaneously estimate state and the 2. PROBLEM FORMULATION
unknown inputs when the latter vary slowly. Other .

results on unknown observers synthesis for some par-consider MIMO systems of the form:
ticular classes of nonlinear systems can be found in

(Xiong and Saif, 2001; Farzat al, 2004; Ha and z = f(w,x)
Trinh, 2004). { y=Czx =z
In this paper, one proposes a full order high gain ob-

)
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withz=| . | ; f(w,z) = : ;
2 1 (w,2)
fi(w, z)
é = [In1a0n1Xn2a0n1Xn37--~70n1><nq] (2)

where the state € R™ with z* ¢ R™, k=1,...,q

q
andp =n; >ng > ... > ny, an = n; the input
k=1

w(t) € U the set of bounded absolutely continuous

functions with bounded derivatives from™Rinto 1/
a compact subset of R the outputy € R? and
f(u,x) € R™ with f¥(u,z) € R™. The functions
f* are assumed to satisfy the following hypothesis:
(H1) Each functionf*(w, z), k = 1,...,q — 1 satis-

fies the following rank condition:
k

of n
Rank(m(w,x)) =ngt1 V€ R Ywe W
Moreover, one assumes thad;, 3; > 0 such that

forall Kk € {1,...,9 — 1}, V2 € R", Vw €
af T oapk

W, O[?c[7 S (W(w,x)> W(w,x) S

5]2‘Ink+l

(H2) For1 <
fFw, 2. .. x
to one.

k+1

E < g — 1; the mapz*t! —
k k1) from IR™+! into R™ is one

System (1) has been considered in (Hammouri andR™ ™™; X? =

Farza, 2003) and it characterizes a subclasg/of

uniformly observable systems. In this paper, one shall
suppose that a subset of the inputs is unknown. More

precisely, one shall suppose that the veai¢t) can
be partitioned as followsu(t) = (u(t)> where

v(t)

v(t) € R™ is completely unknown and(t) € R*™™

~ F1 1,2
lowing onesf!(u,z!, 2?) = (fl(u’x - )> and

fa(u,at, 2?)
1
G'(u,s) = (%EZ’E;) The following two rank

conditions are assumed to be satisfied:
(i) Rank (Gi(u, s)) = m,

forall w € U andforallt > 0
8—fll(u ', 2?) Gi(u,s)
aq;? ) ) )
of;

722(“7 xlv 1,2) G%(U, S)
forall x € R", v e U andt >0
(H5) The time derivative of the unknown inputt)
is a completely unknown functios(t), which is uni-

formly bounded that isup ||e(¢)|| < (. wheres, > 0
t>0

(i) Rank =ngs+m

is a real number.

To summarize, the nonlinear system which will be
considered with view to observer synthesis can be

written under the following condensed form:

X' = f}((u>X11aX12’X22) +G‘1>((U7S>X21 +§(t)
X2 = fy(u, X1, X?) + G% (u, 8) Xa

(y1=X11:93%>
Y= — X2l
Y2 = A1 = Tg
3)

X! n+m. y1 _ Xllzxi
X2)€|R X = X21:v €

whereX = <
X7 =,
X22 =z
e R"™™; &(t) =
Xq2 =4
0
e(t)

); FL(u, X1, X2, X2)

~2 ’
X \W A1y -

is fully known. The objective then consists in syn- ~
thesizing an observer to simultaneously estimate the

vector of unknown inputs(¢) and the non measured

states without assuming any model for the unknown [ G1(u, s)
inputs. The synthesis of such observer necessitates th 0
adoption of some hypothesis which will be stated in
due courses. At this step, one assumes the following:
(H3) For k = 1,...,q, each functionf* has the
following structure:

o fF(uyv, ) = fR(u,at, ... 2R +GF(u(t), s(t))v
where s(t) is a known signal with a bounded time
derivative;G* (u(t), s(t)) € R™ andG*(u(t), s(t))
satisfies the following rank condition:

Rank(G) = Rank(G') =m, Vue Uandvt >0
Moreover, one supposes thatq, B¢ > 0 such that
Vue UVt >0, 0<aZl, <(GHTG! < pZ1,,.
Notice that hypothesis (H1) and (H2), satisfied by
still be satisfied byf*.

); G% (u,s) =

3. OBSERVER SYNTHESIS

Before giving the equations of the proposed observer,
one shall introduce some notations and preliminary
results.

e Let 6,605 > 0 be two real numbers and lét; (6,)
andA,(62) be the following two block diagonal ma-
trices:

) y _ ‘ 1
(H4) TheTloutputx can be partitioned as follows: A1 (67) Zdlag(fml»afml) (4)
! = 9:% with z1 € R™, 2} € RP~"™ and 1 1

2 o Ao () = diag(Ty—my s — Ty mrseery——To
m < m; < p. Such a partition induces the fol- 2(02) = diag(Ip—m, Gy P ga—" 1)



e Fori = 1,2, let S; be the unique solution of the
algebraic Lyapunov equation :

0 I,
whereA; = [0 0 } and
0Ly m, O 0
Ay = Tp—ms (©)
0 i IP*ml
0 ... 0 0

are respectivel@m, x 2m; andg(p—ma) xg(p—mq)
square matrices and

Cl = [ImlOWH] 02 Op—nn]
(7)

are respectivelyn; x 2m; and(p —mq) x ¢(p —mq)

rectangular matrices. It can be shown tlsatand S

are symmetric positive definite and that one has:

[ pP— m10p—m1

CrL, i,

C2Ly m,
srief = [21]"“] sptef= | T @

CIy i,
hereC' !

e Let D(u, s) be the following(n — m1) x m; rectan-
gular matrix:

D(uv S) = . (9)
G (u, s) (G%(u, s))Jr

where the notatio-)™ means the left inverse ¢f).
o Vel € R™,VE2 € RPT™, VES € R™, set:

]?12(%3’5%»5%’5%) = ]721(“75%753755)
~Gi(u,5) (Gl(u,5)" fi(u.€l,62,6) (10)

One states the following (see the appendix for the I

proof):

Lemma 1 Under hypothesis (H1) and (H4), one has:

oft

Rank (863

(U,S,g%,fif%)) ="n2 (11)

e Set Ay (u,s) =diag (Im,,G1(u,s)) (12)

o V&l € R™,VE2 € RPF™, V&2 € R™, k =
2,...,q, let Ay be the following block diagonal ma-
trix:

A2(”7£7£%7£%a§%v s 763) =

. a.f12 1 2 2
dlag Ipfmp 852 (U7S,§1,fl,§2), (13)
2
(922( 9 751751352)8'?3( £1a£17£2v£3)

off 7 o
7w s €6 8) Haskﬂ

5}75%7 e 751%4»1))

Notice that according to Hypothesis (H1),(H4) and
lemma 1, the matrice&; andA, are of full rank.

Now, consider the following dynamical system:
= f}((”,X%,X%,X%) + G%(u,s)f(%
— 01 AT (u, ) AT (61)STOF (X — 1)
X% = f?((qullVXQ) + G%((u’ S)X%
— 008 (s, X1, X2) A7 (02)57CF (X3 — 1)

— 260, D(u, s)(X'll — Y1)
(14)
. Xl R i‘l
whereX = ( A2> € R™™ with X! = ( }) €
X ]
i
. i?
R™ ™ A% e R™, ¢ € R", X? = . €
44
R"™™, 33 € RP™™, i% € R™, k = 2,...,¢;
X2 = X2 D(u,s) (X! =), A; andA, are respec-

tively given by (12) and (13)Ax(6;) and S, 'CF,
k = 1,2 are respectively given by (4) and (8); the
matrix D is given by (9);61, 62 > 0 are real numbers.

One now states the main result (a sketch of the proof
is given in the appendix):

Theorem 1:Suppose that system (3) satisfies hypothe-
sis (H1) to (H5). Then,

3010 > 0; 3020 > 0; Vb1 > 0105 V02 > 02 ;
XN > 0; 3#(91,02) > 0; 3M(91,02) >0
Yu € U; ¥X(0) € R"*™; one has:

e(t)| < Arexp (—p(01,62)t) [le(0)[[+M (61, 62)5:

wheree(t) = X(t) — X(t) with X(t) is the un-
known trajectory of system (3) associated to the in-
put u, X (t) is any trajectory of system (14) asso-
ciated to the inputu and the outputsy; and ys;

B- is the upper bound ofe(t)|| given in hypothesis
(H5). Moreover, one has: hm (01, 03) = +o0
hm M(Gl,ﬂg) —O

61,00—00

and

Remark: Observe that foe(¢t) = 0, i.e. when the
unknown inputs are constant, the convergence of the
estimation error is exponential. In the case where
lle(®)|l # 0 but bounded bys., the asymptotic estima-
tion error can be made as small as desired by choosing
values off; andds high enough.



4. EXAMPLE

Consider the following dynamical system:
i1 = (a — z3)zg — z30(t) — 21
T = x324 + (a — x3)v(t) — 29
i3 = x4(1 +23) — x5 — 10sin(t)v(t)
iy = x5 — x5 — 2cos(t)v(t)
I5 = bsin(2t)v(t)
y = [z122 xg]T

(15)

wherez = [z 2 x3 4 25]7 € R® with z; € R,

v(t) is the unknown input and # 0 is a real number.

To simplify, no known input has been considered. For ) )
simulation purposes, the following expression (un- | FESIMATED SIMULATED
known by the observer) has been used for the unknown ! : :
input:

v(t) = bsin(5t) (16)
Itis easy to see that system (15) is under form (3) with:

1 T. .2 _ . .3 _ . .
xt = (11 X2 W3] 5 T = 245 T = T

1 9 (CL - ;L‘3)l‘4 — 1 - 3 . ES"I’I\MATEI; SIMULATED
[, 2%) = T3Ty — T2 [ (@) = w5 —ay;
wa(1+23) — o3

Fig. 1. Estimation ofr4, x5 andv

—x3(t
F’(x) =0, G s(t)) = | a— ;i()t) : Conclusion: A high gain observer has been dgsigned
C10e; for a class of nonlinear systems. The appealing fea-
10sin(t) He -
) 3 _ tures of the proposed observer are its implementation
G7(s(t)) = —2cos(t); G7(s(t)) = 5sin(2?) and calibration simplicity. The performances of the

Concerning the partition of! needed in hypothesis proposed observer have been demonstrated in simula-
(H4), one can consider the following one (the only tion through an example. The use of the proposed ob-
possible partition in this example)i = [z x5]7 and servers in real experiments related to bioreactors and
x3 = x3. Now, one can easily check hypothesis (H1) induction motors will be treated in upcoming works.

to (H5) and an observer under form (14) can be used Appendix: Proofs
in order to achieve the required estimations. Proof of Lemma 1. Let

P(t) = Lm, 0
4.1 simulation Results ~ \ =GL(ult), s()) (G}(u(t),s(t)))+ Lym,

An observer of the form (14) has been used in or- Sincerank(P(t)) = pforall¢ > 0 andp > ny +m
der to estimater,, z5 andv. This observer has been (according to (ii) of (H4)), one has:
simulated using data issued from simulation. In or-

der to simulate practical situations, each of the mea- no +m = Rank
surements ofry, 2o and x3 has been corrupted by 8]'711 Lo )
a uniformly distributed random signal produced by 8752(% §1,61,63) Gi(u,s)
SIMULINK with zero mean value and a standard de- P(t) - 8f12
2

viation respectively equal tth =3, 1072 and3.2 10~%. ((u, &1, €2,€2) G3(u, s)

In figure 1, the true time evolutions of,, x5 andv (is- 8§§~

sued from model simulation) are compared with their aff 1 .9 .9 1
respective estimates provided by the observer. Notice ~ _ - @(”’51’51752) Gi(u, 5)
that corresponding curves are almost superimposed. o of? 19 .o

The employed values of; and d, are respectively @(“78’51’51752) 0
equal to60 and 15. The initial conditions for the o2

model and the observer are; (0) = #(0) = 1; = Rank <a€§(u7s,§%7£f,§§)) +m
.I'Q(O) = .f?Q(O) =1; 563(0) = §73<0) =1, .%‘4(0) = 2; 2

x5(0) = 10; 24(0) = 0; &5(0) = 0; 9(0) = —1. This leads to (11).

The obtained results clearly show the good agreementSketch of the proof of Theorem 1.0ne shall intro-
between the estimated and simulated variables. Recalluce two changes of coordinates. Consider the follow-
that the expression of the unknown input (equation ing first one:T'(u, s) : R™*™ — R"t™

. . . .. _1 —1
(16)) introduced for simulation purposes is ignored by Yoo 3 a_:2 — T, )X with 7t = (71 €
the observer. T T



T
R™ ™ 7l € R™; 25 € R™; 22 =

2

Zq

R"~™, 72 € RP"™, 727 € R™, k= 2,...,qand
WhereT(u s) is the foIIOW|ng(n+m) (n+m) non

singular square matrix :

G*(u, ) (G (u,8)) Tk =2,.

an
with 73 (u, 5) £ G} (u, 5) (G (u, s>>+ andy?(u, s) 2

C = (0 Tin, Omlxm> (19)

mXxXmi 0m><m

02 _ ( [p—ml 0(p—m1)><(n—p) ) (20)

0(n—p)x(p—m1) O(n—p)x(n—p)

where I,,,, is them; x m; identity matrix and the
notation0; ; means the x j null matrix.
Now, consider the second change of coordinates:

@ n+m m —m1i) = jl
B e

z .
2= 2 ) More precisely, one has:

e d; : R™T" _, RZ™

=1 1
_ T z _ A
"I/'l = 7% = Zl = % = @1(114,871'1) =
D) 2

A1 (u,s)z! = 1 with zk e R™, k =
G (u, )z2 ]
1,2 and where the matrlxl is given by equation (12).

The objective of this transformanon is to generate a ® ®» : R"™™ — R4~
subsystem that does not depend on the unknown input Ty 21

(v = z3). Indeed, one can show that this transforma-

tion puts system (3) under the following form:

= 02562 + ’yf(u, S)Cli‘l

- 71 1 =2
wheref!(u, s, 71,73, 73) = (fl (u, 5,21, 71, 73)

Flu,s,31,3%,33) = fl (2", 2?)
F(u,s,3},3%) = fi(u,a",2?)
—72(u, ) f} (u, 2", 2%)
fE(u,s,z1,7%) = fk(u,xl,...,karl)
k=2,....,q—1

f(?(u,s@%,ﬁ) 2 fq(u,x)

g%(uasvj%) = 7%( 75)£1
oy A =
Gi(u, 5,51, 2%) = =7 (u, s) f1 (u, 2', 2%)
dry? _
—d—t’“(u,s)gc%,k:Q7 ,q

ot = f(u, s, 21,22, 72) + G(u, s)z" + &(t)

Y1 = 711(_1) 2 Cy 7t

2 = f2(u, 5,21, 7%) + 3% (u, 5, 71, 7%) (18)
ys = ha(z',72) £ 22 + 42 (u, )T

!)

=2 2
=2 2
Lo 22
EQZ . —>Z2: . :q)Q(U@Saylai‘Q)é
T4 %
i
o fRusm, @)
oft
?(U 5,Y1,% )fz(u 5,91, % )
2 with
H Qk U 5,41,T ) fq l(u 591, 2)
0Ty
22 e IR" ™ 'k =1,...,q. One can show that this

transformation puts system (18) under the following
form (see e.g. (Hammouri and Farza, 2003)):

b= A2t + ot (usz z)+A1(us) =(t)

Y1 —hl( ) Clz —Z%

32 = Ay2? —|—w (u, s yl,zl, 2?) (1)
Yo = hg(Zl z ) CQZ +’Y C’lz

whereC; and C, are given by (7) and each of the
functions?(u, s, 2, 22) is triangular with respect to
2%, i = 1,2. Now, consider the following dynamical
system:

B= A (a5, 21, 22)
—61 A7 (61)S7 1 CF (h(2Y) — 1)
Z :AQZ +'¢)2(u; Say172%722)
aq> . of? /2N A
8 a2 (U S yl,@ ( ))ﬁ(u7875%aq>2(22))(2% _Z%)

1
—02051(02)S5 1 CF (h(2',2%) — y2)

00 (a1, D5 ()

.
<A2+<u,s,y1,<1>5<22>> - (?fw s 25(:2)) )
025" (02)8; 1 C3 (h(21, 2%) = y2) (22)



3t 31
wherez = <2> e R¥mtalp=mi). 21 {%} €
z 22
22
21
22
2 21 m 22 22 ( —m ) .
R“", 2 € R™; 22 = | | € R?P™™ with
22

2 e RP™, k =1,...,q ®¢ denotes the converse
function of ®;; 6,,0> > 0 are two real numbers and
the variable¢{ € R™* is given by the Mean value
Theorem:

f2(u7 S, i%a iﬂ) -

One shall show that system (22) can be written un-
der form (14) in the original coordinates Indeed,
proceeding as in (Farzat al., 2004), one can show
that system (22) can be written in the coordinates
follows:

22 2 21 22
x 7f (U,S,I’l,llfA 99 (23)
— O2AF (u, 5,71, 32) A5 (69)
Sy 1Cy (2 + 77 (u, 8)Z] — y2)
. ! . Zi
wherez = <32> e R, 2l = (&) €
T i)
R™*™ 71 € R™, 2} e R™, 22 = | : | €
o
R™ ™, 37 c R"™™; 22 c R™, k=2,...,q.

Now, according to the expressionBfu, s) (equation

(17)), one can easily show that system (23) can be

written in the original coordinates under form (14).

Now, for 8, > ¢q, 85 > ¢4, choosef; such that
293(']*1)

(02 — ca)
can show thatt’ < —n(fy — ¢s)V + ;—Sﬂgﬁwhere
1
q—1
no=1-— cds
V(01— c1) (02 — cq)
that |let)]| < |le®)|| < 6:]le(t)]|, one can show

A2

2 exp [~ (02 — ca)t] e(0)] +

(.. This ends the proof of Theorem 1.

01 > max(egdg% —cy4+ 1,01+ ). One

> 0. Using the fact

that: |le(t)|| < 61
c3

NVAL(02 — c4)
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