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Abstract: A high gain observer is proposed for a class of multi-output nonlinear systems
with unknown inputs in order to simultaneously estimate the whole state as well as
the unknown inputs. The gain of this observer does not require the resolution of any
dynamical system and is analytically given. Moreover, its tuning is reduced to the choice
of two real numbers. The performances of the proposed observer are demonstrated in
simulation through an illustrative example.Copyright c© 2005 IFAC
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1. INTRODUCTION

Over the last twenty years, many researches have fo-
cused on the observer design for linear systems with
unknown inputs (Johnson, 1975; Kudvaet al., 1980;
Hou and M̈uller, 1992; Guan and Saif, 1991; Darouach
et al., 1994). In most cases, the objective was to
estimate the non measured state variables and the
proposed observers do not provide any information
on the unknown inputs. In a relatively recent paper
(Corless and Tu, 1998), the authors proposed a LMI
based observer in order to jointly estimate the miss-
ing states and the unknown inputs. However, strong
conditions are assumed to ensure the convergence of
the inputs estimates. In a more recently paper (Xiong
and Saif, 2003), the authors proposed reduced order
observers to simultaneously estimate state and the
unknown inputs when the latter vary slowly. Other
results on unknown observers synthesis for some par-
ticular classes of nonlinear systems can be found in
(Xiong and Saif, 2001; Farzaet al., 2004; Ha and
Trinh, 2004).
In this paper, one proposes a full order high gain ob-

server for the simultaneous estimation of the non mea-
sured states and the unknown inputs. The proposed ap-
proach does not necessitate the output differentiation
and it only assumes that the dynamics of these inputs
are bounded without making any hypothesis on how
these inputs vary.
This paper is organized as follows. In the next section,
the class of nonlinear systems which is the basis of
the observer design is introduced. Section 3 is devoted
to the observer synthesis. For sake of clarity, only
relevant results are given and corresponding proofs are
reported in appendices. Section 4 is devoted to a sim-
ulation example in order to highlight the performance
of the proposed observer.

2. PROBLEM FORMULATION

Consider MIMO systems of the form:

{
ẋ = f(w, x)
y = C̄x = x1 (1)



with x =




x1

x2

...
xq


 ; f(w, x) =




f1(w, x1, x2)
f2(w, x1, x2, x3)

...
fq−1(w, x)
fq(w, x)




;

C̄ = [In1 , 0n1×n2 , 0n1×n3 , . . . , 0n1×nq ] (2)

where the statex ∈ IRn with xk ∈ IRnk , k = 1, . . . , q

andp = n1 ≥ n2 ≥ . . . ≥ nq,
q∑

k=1

nk = n; the input

w(t) ∈ U the set of bounded absolutely continuous
functions with bounded derivatives from IR+ into W
a compact subset of IRs; the outputy ∈ IRp and
f(u, x) ∈ IRn with fk(u, x) ∈ IRnk . The functions
fk are assumed to satisfy the following hypothesis:
(H1) Each functionfk(w, x), k = 1, . . . , q − 1 satis-
fies the following rank condition:

Rank(
∂fk

∂xk+1
(w, x)) = nk+1 ∀x ∈ IRn; ∀w ∈ W

Moreover, one assumes that∃αf , βf > 0 such that
for all k ∈ {1, . . . , q − 1}, ∀x ∈ IRn, ∀w ∈
W , α2

fInk+1 ≤
(

∂fk

∂xk+1
(w, x)

)T
∂fk

∂xk+1
(w, x) ≤

β2
fInk+1

(H2) For 1 ≤ k ≤ q − 1; the mapxk+1 7→
fk(w, x1, . . . , xk, xk+1) from IRnk+1 into IRnk is one
to one.
System (1) has been considered in (Hammouri and
Farza, 2003) and it characterizes a subclass ofU -
uniformly observable systems. In this paper, one shall
suppose that a subset of the inputs is unknown. More
precisely, one shall suppose that the vectorw(t) can

be partitioned as followsw(t) =
(

u(t)
v(t)

)
where

v(t) ∈ IRm is completely unknown andu(t) ∈ IRs−m

is fully known. The objective then consists in syn-
thesizing an observer to simultaneously estimate the
vector of unknown inputsv(t) and the non measured
states without assuming any model for the unknown
inputs. The synthesis of such observer necessitates the
adoption of some hypothesis which will be stated in
due courses. At this step, one assumes the following:
(H3) For k = 1, . . . , q, each functionfk has the
following structure:
• fk(u, v, x) = f̃k(u, x1, . . . , xk+1)+Gk(u(t), s(t))v
where s(t) is a known signal with a bounded time
derivative;Gk(u(t), s(t)) ∈ IRnk andG1(u(t), s(t))
satisfies the following rank condition:
Rank(G) = Rank(G1) = m, ∀ u ∈ U and∀ t ≥ 0
Moreover, one supposes that∃αG, βG > 0 such that
∀u ∈ U , ∀t ≥ 0, 0 < α2

GIm ≤ (G1)T G1 ≤ β2
GIm.

Notice that hypothesis (H1) and (H2), satisfied byfk,
still be satisfied bỹfk.
(H4) The outputx1 can be partitioned as follows:

x1 =
(

x1
1

x1
2

)
with x1

1 ∈ IRm1 , x1
2 ∈ IRp−m1 and

m ≤ m1 < p. Such a partition induces the fol-

lowing onesf̃1(u, x1, x2) =

(
f̃1
1 (u, x1, x2)

f̃1
2 (u, x1, x2)

)
and

G1(u, s) =
(

G1
1(u, s)

G1
2(u, s)

)
. The following two rank

conditions are assumed to be satisfied:
(i) Rank

(
G1

1(u, s)
)

= m,
for all u ∈ U and for allt ≥ 0

(ii)Rank




∂f̃1
1

∂x2
(u, x1, x2) G1

1(u, s)

∂f̃1
2

∂x2
(u, x1, x2) G1

2(u, s)


 = n2 + m

for all x ∈ IRn, u ∈ U andt ≥ 0
(H5) The time derivative of the unknown inputv(t)
is a completely unknown function,ε(t), which is uni-
formly bounded that issup

t≥0
‖ε(t)‖ ≤ βε whereβε > 0

is a real number.
To summarize, the nonlinear system which will be
considered with view to observer synthesis can be
written under the following condensed form:




Ẋ1 = f̃1
X(u,X1

1 , X2
1 , X2

2 ) + G1
X(u, s)X1

2 + ε̄(t)
Ẋ2 = f̃2

X(u,X1
1 , X2) + G2

X(u, s)X1
2

y =
(

y1 = X1
1 = x1

1

y2 = X2
1 = x1

2

)

(3)

whereX =
(

X1

X2

)
∈ IRn+m; X1 =

(
X1

1 = x1
1

X1
2 = v

)
∈

IRm1+m; X2 =




X2
1 = x1

2

X2
2 = x2

...
X2

q = xq


 ∈ IRn−m1 ; ε̄(t) =

(
0

ε(t)

)
; f̃1

X(u, X1
1 , X2

1 , X2
2 ) =

(
f̃1
1 (u, x1, x2)

0

)
,

f̃2
X(u,X1

1 , X2) =




f̃1
2 (u, x1, x2)

f̃2(u, x1, x2, x3)
...

f̃q(u, x)


; G1

X(u, s) =

(
G1

1(u, s)
0

)
; G2

X(u, s) =




G1
2(u, s)

G2(u, s)
...

Gq(u, s)


.

3. OBSERVER SYNTHESIS

Before giving the equations of the proposed observer,
one shall introduce some notations and preliminary
results.
• Let θ1, θ2 > 0 be two real numbers and let∆1(θ1)
and∆2(θ2) be the following two block diagonal ma-
trices:

∆1(θ1) = diag(Im1 ,
1
θ1

Im1) (4)

∆2(θ2) = diag(Ip−m1 ,
1
θ2

Ip−m1 , . . . ,
1

θq−1
2

Ip−m1)



• For i = 1, 2, let Si be the unique solution of the
algebraic Lyapunov equation :

Si + AT
i Si + SiAi − CT

i Ci = 0 (5)

whereA1 =
[

0 Im1

0 0

]
and

A2 =




0 Ip−m1 0 0
... Ip−m1

0
.. . Ip−m1

0 . . . 0 0




(6)

are respectively2m1×2m1 andq(p−m1)×q(p−m1)
square matrices and

C1 = [Im10m1 ] ; C2 = [Ip−m10p−m1 . . . 0p−m1 ]
(7)

are respectivelym1×2m1 and(p−m1)× q(p−m1)
rectangular matrices. It can be shown thatS1 andS2

are symmetric positive definite and that one has:

S−1
1 CT

1 =
[

2Im1

Im1

]
; S−1

2 CT
2 =




C1
q Ip−m1

C2
q Ip−m1

...
Cq

q Ip−m1


 (8)

whereCi
j =

j!
i!(j − i)!

• Let D(u, s) be the following(n−m1)×m1 rectan-
gular matrix:

D(u, s) =




G1
2(u, s)

(
G1

1(u, s)
)+

G2(u, s)
(
G1

1(u, s)
)+

...

Gq(u, s)
(
G1

1(u, s)
)+




(9)

where the notation(·)+ means the left inverse of(·).
• ∀ξ1

1 ∈ IRm1 , ∀ξ2
1 ∈ IRp−m1 , ∀ξ2

2 ∈ IRn2 , set:

f̄2
1 (u, s, ξ1

1 , ξ2
1 , ξ2

2) = f̃1
2 (u, ξ1

1 , ξ2
1 , ξ2

2)

−G1
2(u, s)

(
G1

1(u, s)
)+

f̃1
1 (u, ξ1

1 , ξ2
1 , ξ2

2) (10)

One states the following (see the appendix for the
proof):
Lemma 1Under hypothesis (H1) and (H4), one has:

Rank

(
∂f̄2

1

∂ξ2
2

(u, s, ξ1
1 , ξ2

1 , ξ2
2)

)
= n2 (11)

• Set Λ1(u, s) = diag
(
Im1 , G

1
1(u, s)

)
(12)

• ∀ξ1
1 ∈ IRm1 , ∀ξ2

1 ∈ IRp−m1 , ∀ξ2
k ∈ IRnk , k =

2, . . . , q, let Λ2 be the following block diagonal ma-
trix:
Λ2(u, s, ξ1

1 , ξ2
1 , ξ2

2 , . . . , ξ2
q ) =

diag

(
Ip−m1 ,

∂f̄2
1

∂ξ2
2

(u, s, ξ1
1 , ξ2

1 , ξ2
2), (13)

∂f̄2
1

∂ξ2
2

(u, s, ξ1
1 , ξ2

1 , ξ2
2)

∂f̃2

∂ξ2
3

(u, ξ1
1 , ξ2

1 , ξ2
2 , ξ2

3), . . . ,

∂f̄2
1

∂ξ2
2

(u, s, ξ1
1 , ξ2

1 , ξ2
2)

q−1∏

k=2

∂f̃k

∂ξ2
k+1

(u, ξ1
1 , ξ2

1 , . . . , ξ2
k+1)

)

Notice that according to Hypothesis (H1),(H4) and
lemma 1, the matricesΛ1 andΛ2 are of full rank.

Now, consider the following dynamical system:




˙̂
X1 = f̃1

X(u, X̂1
1 , X̂2

1 , X̂2
2 ) + G1

X(u, s)X̂1
2

− θ1Λ+
1 (u, s)∆−1

1 (θ1)S−1
1 CT

1 (X̂1
1 − y1)

˙̂
X2 = f̃2

X(u, X̂1
1 , X̂2) + G2

X(u, s)X̂1
2

− θ2Λ+
2

(
u, s, X1

1 , X̃2
)

∆−1
2 (θ2)S−1

2 CT
2 (X̂2

1 − y2)

− 2θ1D(u, s)(X̂1
1 − y1)

(14)

whereX̂ =
(

X̂1

X̂2

)
∈ IRn+m with X̂1 =

(
x̂1

1

v̂

)
∈

IRm1+m, x̂1
1 ∈ IRm1 , v̂ ∈ IRm, X̂2 =




x̂1
2

x̂2

...
x̂q


 ∈

IRn−m1 , x̂2
1 ∈ IRp−m1 , x̂k ∈ IRnk , k = 2, . . . , q;

X̃2 = X̂2−D(u, s)(X̂1
1 −y1), Λ1 andΛ2 are respec-

tively given by (12) and (13);∆k(θk) and S−1
k CT

k ,
k = 1, 2 are respectively given by (4) and (8); the
matrixD is given by (9);θ1, θ2 > 0 are real numbers.

One now states the main result (a sketch of the proof
is given in the appendix):
Theorem 1:Suppose that system (3) satisfies hypothe-
sis (H1) to (H5). Then,

∃θ1,0 > 0; ∃θ2,0 > 0; ∀θ1 > θ1,0; ∀θ2 > θ2,0;

∃λ > 0; ∃µ(θ1, θ2) > 0; ∃M(θ1, θ2) > 0;

∀u ∈ U ; ∀X̂(0) ∈ Rn+m; one has:

‖e(t)‖ ≤ λθ1exp (−µ(θ1, θ2)t) ‖e(0)‖+M(θ1, θ2)βε

where e(t) = X̂(t) − X(t) with X(t) is the un-
known trajectory of system (3) associated to the in-
put u, X̂(t) is any trajectory of system (14) asso-
ciated to the inputu and the outputsy1 and y2;
βε is the upper bound of‖ε(t)‖ given in hypothesis
(H5). Moreover, one has: lim

θ1,θ2→∞
µ(θ1, θ2) = +∞

and lim
θ1,θ2→∞

M(θ1, θ2) = 0.

Remark: Observe that forε(t) = 0, i.e. when the
unknown inputs are constant, the convergence of the
estimation error is exponential. In the case where
‖ε(t)‖ 6= 0 but bounded byβε, the asymptotic estima-
tion error can be made as small as desired by choosing
values ofθ1 andθ2 high enough.



4. EXAMPLE

Consider the following dynamical system:




ẋ1 = (a− x3)x4 − x3v(t)− x1

ẋ2 = x3x4 + (a− x3)v(t)− x2

ẋ3 = x4(1 + x2
4)− x3

3 − 10sin(t)v(t)
ẋ4 = x5 − x3

4 − 2cos(t)v(t)
ẋ5 = 5sin(2t)v(t)
y = [x1 x2 x3]T

(15)

wherex = [x1 x2 x3 x4 x5]T ∈ IR5 with xi ∈ IR,
v(t) is the unknown input anda 6= 0 is a real number.
To simplify, no known input has been considered. For
simulation purposes, the following expression (un-
known by the observer) has been used for the unknown
input:

v(t) = 5sin(5t) (16)

It is easy to see that system (15) is under form (3) with:

x1 = [x1 x2 x3]T ; x2 = x4; x3 = x5;

f̃1(x1, x2) =




(a− x3)x4 − x1

x3x4 − x2

x4(1 + x2
4)− x3

3


 ; f̃2(x) = x5−x3

4;

f̃3(x) = 0; G1(s(t)) =




−x3(t)
a− x3(t)
−10sin(t)


 ;

G2(s(t)) = −2cos(t); G3(s(t)) = 5sin(2t)

Concerning the partition ofx1 needed in hypothesis
(H4), one can consider the following one (the only
possible partition in this example):x1

1 = [x1 x2]T and
x1

2 = x3. Now, one can easily check hypothesis (H1)
to (H5) and an observer under form (14) can be used
in order to achieve the required estimations.

4.1 simulation Results

An observer of the form (14) has been used in or-
der to estimatex4, x5 andv. This observer has been
simulated using data issued from simulation. In or-
der to simulate practical situations, each of the mea-
surements ofx1, x2 and x3 has been corrupted by
a uniformly distributed random signal produced by
SIMULINK with zero mean value and a standard de-
viation respectively equal to10−3, 10−3 and3.2 10−4.
In figure 1, the true time evolutions ofx4, x5 andv (is-
sued from model simulation) are compared with their
respective estimates provided by the observer. Notice
that corresponding curves are almost superimposed.
The employed values ofθ1 and θ2 are respectively
equal to 60 and 15. The initial conditions for the
model and the observer are:x1(0) = x̂1(0) = 1;
x2(0) = x̂2(0) = 1; x3(0) = x̂3(0) = 1; x4(0) = 2;
x5(0) = 10; x̂4(0) = 0; x̂5(0) = 0; v̂(0) = −1.
The obtained results clearly show the good agreement
between the estimated and simulated variables. Recall
that the expression of the unknown input (equation
(16)) introduced for simulation purposes is ignored by
the observer.
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Fig. 1. Estimation ofx4, x5 andv

Conclusion:A high gain observer has been designed
for a class of nonlinear systems. The appealing fea-
tures of the proposed observer are its implementation
and calibration simplicity. The performances of the
proposed observer have been demonstrated in simula-
tion through an example. The use of the proposed ob-
servers in real experiments related to bioreactors and
induction motors will be treated in upcoming works.

Appendix: Proofs
Proof of Lemma 1.Let

P (t) =
(

Im1 0
−G1

2(u(t), s(t))
(
G1

1(u(t), s(t))
)+

Ip−m1

)

Sincerank(P (t)) = p for all t ≥ 0 andp ≥ n2 + m
(according to (ii) of (H4)), one has:

n2 + m = Rank
P (t) ·




∂f̃1
1

∂ξ2
2

(u, ξ1
1 , ξ2

1 , ξ2
2) G1

1(u, s)

∂f̃1
2

∂ξ2
2

((u, ξ1
1 , ξ2

1 , ξ2
2) G1

2(u, s)







= Rank




∂f̃1
1

∂ξ2
2

(u, ξ1
1 , ξ2

1 , ξ2
2) G1

1(u, s)

∂f̄2
1

∂ξ2
2

(u, s, ξ1
1 , ξ2

1 , ξ2
2) 0




= Rank

(
∂f̄2

1

∂ξ2
2

(u, s, ξ1
1 , ξ2

1 , ξ2
2)

)
+ m

This leads to (11).
Sketch of the proof of Theorem 1.One shall intro-
duce two changes of coordinates. Consider the follow-
ing first one:T (u, s) : IRn+m → IRn+m

X 7→ x̄ =
(

x̄1

x̄2

)
= T (u, s)X with x̄1 =

(
x̄1

1

x̄1
2

)
∈



IRm1+m; x̄1
1 ∈ IRm1 ; x̄1

2 ∈ IRm; x̄2 =




x̄2
1
...

x̄2
q


 ∈

IRn−m1 , x̄2
1 ∈ IRp−m1 , x̄2

k ∈ IRnk , k = 2, . . . , q and
whereT (u, s) is the following(n+m)×(n+m) non
singular square matrix :

T (u, s) =




Im1 0 0 . . . . . . 0
0 Im 0 . . . . . . 0

−γ2
1(u, s) 0 Ip−m1 0 . . .

...

−γ2
2(u, s) 0 0 In2

.. .
...

...
. ..

. ..
.. . 0

−γ2
q (u, s) 0 . . . 0 Inq




(17)

with γ2
1(u, s) ∆= G1

2(u, s)
(
G1

1(u, s)
)+

andγ2
k(u, s) ∆=

Gk(u, s)
(
G1

1(u, s)
)+

, k = 2, . . . , q.
The objective of this transformation is to generate a
subsystem that does not depend on the unknown input
(v = x̄1

2). Indeed, one can show that this transforma-
tion puts system (3) under the following form:





˙̄x1 = f̄1(u, s, x̄1
1, x̄

2
1, x̄

2
2) + G(u, s)x̄1 + ε̄(t)

y1 = h̄1(x̄1) ∆= C̄1x̄
1

˙̄x2 = f̄2(u, s, x̄1
1, x̄

2) + ḡ2(u, s, x̄1
1, x̄

2)
y2 = h̄2(x̄1, x̄2) ∆= x̄2

1 + γ2
1(u, s)x̄1

1

= C̄2x̄
2 + γ2

1(u, s)C̄1x̄
1

(18)

wheref̄1(u, s, x̄1
1, x̄

2
1, x̄

2
2) =

(
f̄1
1 (u, s, x̄1

1, x̄
2
1, x̄

2
2)

0

)

f̄2(u, s, x̄1
1, x̄

2) =




f̄2
1 (u, s, x̄1

1, x̄
2
1, x̄

2
2)

f̄2
2 (u, s, x̄1

1, x̄
2
1, x̄

2
2, x̄

2
3)

...
f̄2

q (u, s, x̄1
1, x̄

2)


 ;

G(u, s) =
(

0 G1
1(u, s)

0 0

)
; ε̄(t) =

(
0

ε(t)

)
;

ḡ2(u, s, x̄1
1, x̄

2) =




ḡ2
1(u, s, x̄1

1)
ḡ2
2(u, s, x̄1

1, x̄
2
1, x̄

2
2)

...
ḡ2

q (u, s, x̄1
1, x̄

2
1, x̄

2
2)


 with

f̄1
1 (u, s, x̄1

1, x̄
2
1, x̄

2
2)

∆= f̃1
1 (u, x1, x2)

f̄2
1 (u, s, x̄1

1, x̄
2) ∆= f̃1

2 (u, x1, x2)

−γ2
1(u, s)f̃1

1 (u, x1, x2)

f̄2
k (u, s, x̄1

1, x̄
2) ∆= f̃k(u, x1, . . . , xk+1)

k = 2, . . . , q − 1

f̄2
q (u, s, x̄1

1, x̄
2) ∆= f̃q(u, x)

ḡ2
1(u, s, x̄1

1)
∆= −dγ2

1

dt
(u, s)x̄1

1

ḡ2
k(u, s, x̄1

1, x̄
2) ∆= −γ2

k(u, s)f̃1
1 (u, x1, x2)

−dγ2
k

dt
(u, s)x̄1

1 , k = 2, . . . , q

C̄1 =
(

Im1 0m1×m

0m×m1 0m×m

)
(19)

C̄2 =
(

Ip−m1 0(p−m1)×(n−p)

0(n−p)×(p−m1) 0(n−p)×(n−p)

)
(20)

whereIm1 is the m1 × m1 identity matrix and the
notation0i×j means thei× j null matrix.
Now, consider the second change of coordinates:Φ =(

Φ1

Φ2

)
: IRn+m −→ IR2m1+q(p−m1), x̄ =

(
x̄1

x̄2

)
7→

z =
(

z1

z2

)
. More precisely, one has:

• Φ1 : IRm1+m −→ IR2m1

x̄1 =
(

x̄1
1

x̄1
2

)
7→ z1 =

(
z1
1

z1
2

)
= Φ1(u, s, x̄1) ∆=

Λ1(u, s)x̄1 =
(

x̄1
1

G1
1(u, s)x̄1

2

)
with z1

k ∈ IRm1 , k =

1, 2 and where the matrixΛ1 is given by equation (12).
• Φ2 : IRn−m1 −→ IRq(p−m1)

x̄2 =




x̄2
1

x̄2
2
...

x̄2
q


 −→ z2 =




z2
1

z2
2
...

z2
q


 = Φ2(u, s, y1, x̄

2) ∆=




x2
1

f̄2
1 (u, s, y1, x̄

2)
∂f̄2

1

∂x̄2
2

(u, s, y1, x̄
2)f̄2

2 (u, s, y1, x̄
2)

...(
q−2∏

k=1

∂f̄2
k

∂x̄2
k+1

(u, s, y1, x̄
2)

)
f̄2

q−1(u, s, y1, x̄
2)




with

z2
k ∈ IRp−m1 , k = 1, . . . , q. One can show that this

transformation puts system (18) under the following
form (see e.g. (Hammouri and Farza, 2003)):





ż1 = A1z
1 + ψ1(u, s, z1, z2) + Λ1(u, s)ε̄(t)

y1 = h1(z1) = C1z
1 = z1

1

ż2 = A2z
2 + ψ2(u, s, y1, z

1
1 , z2)

y2 = h2(z1, z2) = C2z
2 + γ2

1C1z
1

(21)

whereC1 and C2 are given by (7) and each of the
functionsψi(u, s, z1, z2) is triangular with respect to
zi, i = 1, 2. Now, consider the following dynamical
system:

˙̂z1 = A1ẑ
1 + ψ1(u, s, ẑ1, ẑ2)

−θ1∆−1
1 (θ1)S−1

1 CT
1 (h(ẑ1)− y1)

˙̂z2 = A2ẑ
2 + ψ2(u, s, y1, ẑ

1
1 , ẑ2)

+
∂Φ2

∂x̄2
(u, s, y1, Φc

2(ẑ
2))

∂f̄2

∂x̄1
1

(u, s, ξ1
1 , Φc

2(ẑ
2))(ẑ1

1 − z1
1)

−θ2∆−1
2 (θ2)S−1

2 CT
2 (h(ẑ1, ẑ2)− y2)

−∂Φ2

∂x̄2
(u, s, y1, Φc

2(ẑ
2))

(
Λ+

2 (u, s, y1, Φc
2(ẑ

2))−
(

∂Φ2

∂x̄2
(u, s, y1,Φc

2(ẑ
2))

)+
)

θ2∆−1
2 (θ2)S−1

2 CT
2 (h(ẑ1, ẑ2)− y2) (22)



whereẑ =
(

ẑ1

ẑ2

)
∈ IR2m1+q(p−m1); ẑ1 =

[
ẑ1
1

ẑ1
2

]
∈

IR2m1 , ẑ1
i ∈ IRm1 ; ẑ2 =




ẑ2
1

ẑ2
2
...

ẑ2
q


 ∈ IRq(p−m1) with

ẑ2
k ∈ IRp−m1 , k = 1, . . . , q; Φc

i denotes the converse
function ofΦi; θ1, θ2 > 0 are two real numbers and
the variableξ1

1 ∈ IRm1 is given by the Mean value
Theorem:
f̄2(u, s, ˆ̄x1

1, ˆ̄x2)− f̄2(u, s, x̄1
1, ˆ̄x2) =

∂f̄2

∂x̄1
1

(u, s, ξ1
1 , ˆ̄x2)(ˆ̄x1

1 − x̄1
1) =

∂f̄2

∂x̄1
1

(u, s, ξ1
1 , Φc

2(ẑ
2))(ẑ1

1 − z1
1).

One shall show that system (22) can be written un-
der form (14) in the original coordinatesx. Indeed,
proceeding as in (Farzaet al., 2004), one can show
that system (22) can be written in the coordinatesx̄ as
follows:





˙̄̂x1 = f̄1(u, s, ˆ̄x1
1, ˆ̄x2

1, ˆ̄x2
2) + G(u, s)ˆ̄x1

− θ1Λ+
1 (u, s)∆−1

1 (θ1)S−1CT
1 (C̄1 ˆ̄x1 − y1)

˙̄̂x2 = f̄2(u, s, ˆ̄x1
1, ˆ̄x2) + ḡ2(u, s, ˆ̄x1

1, ˆ̄x2)
− θ2Λ+

2 (u, s, x̄1
1, ˆ̄x2)∆−1

2 (θ2)
S−1

2 CT
2 (ˆ̄x2

1 + γ2
1(u, s)ˆ̄x1

1 − y2)

(23)

where ˆ̄x =
(

ˆ̄x1

ˆ̄x2

)
∈ IRn+m, ˆ̄x1 =

(
ˆ̄x1
1

ˆ̄x1
2

)
∈

IRm1+m, ˆ̄x1
1 ∈ IRm1 , ˆ̄x1

2 ∈ IRm, ˆ̄x2 =




ˆ̄x2
1
...
ˆ̄x2

q


 ∈

IRn−m1 , ˆ̄x2
1 ∈ IRn−m1 ; ˆ̄x2

k ∈ IRnk , k = 2, . . . , q.

Now, according to the expression ofT (u, s) (equation
(17)), one can easily show that system (23) can be
written in the original coordinatesx under form (14).
To end the proof, it suffices to demonstrate theorem 1
by considering system (18) on one hand and system
(22) on the other hand. Indeed, for= 1, 2, setei(t) =
ẑi(t) − zi(t), ēi = ∆i(θi)ei, Vi(ēi) = ēi

T
Siē

i and
let V (ē1, ē2) = V1(ē1) + V2(ē2) be the Lyapunov
candidate function. Using classical computations (see
e.g.(Gauthieret al., 1992; Hammouri and Farza, 2003;
Farzaet al., 2004)), one can show that:

V̇1 ≤−(θ1 − c1)V1 + c2θ
q−1
2

√
V1

√
V2 +

c3βε

θ1

√
V1

V̇2 ≤−(θ2 − c4)V1 + c5θ2

√
V1

√
V2 (24)

whereci, i = 1, . . . , 5 are positive constant parame-
ters which do not depend onθ1 nor θ2 andβε is the
upper bound of‖ε(t)‖ as given in Hypothesis (H5).
Combining inequalities of (24) and takingθ2 ≥ 1,
one obtains:V̇ ≤ −(θ1 − c1)V1 − (θ2 − c4)V2 +

cθq−1
2

√
V1

√
V2 +

c3βε

θ1

√
V1 where c = c2 + c5.

Now, for θ1 > c1, θ2 > c4, chooseθ1 such that

θ1 > max(θq−1
2 , θ2 − c4 + c1, c1 +

c2θ
2(q−1)
2

(θ2 − c4)
). One

can show that:̇V ≤ −η(θ2 − c4)V +
c3

θ1
βε

√
V where

η = 1− cθq−1
2√

(θ1 − c1)(θ2 − c4)
> 0. Using the fact

that ‖ē(t)‖ ≤ ‖e(t)‖ ≤ θ1‖ē(t)‖, one can show

that:‖e(t)‖ ≤ θ1

√
λ2

λ1
exp

[
−η

2
(θ2 − c4)t

]
‖e(0)‖+

c3

η
√

λ1(θ2 − c4)
βε. This ends the proof of Theorem 1.
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