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Abstract: This work aims at the identification of a nonlinear fast rate model from
multi-rate sampled data, which is corrupted with unmeasured disturbances and
measurement noise. The model identification is carried out in two steps. In the
first step, a MISO fast rate nonlinear output error (NOE) model with Weiner
structure is identified from the multi-rate data. In the next step, a nonlinear auto
regressive (NAR) model is developed, which whitens the residuals. The efficacy
of the proposed modeling scheme is demonstrated by carrying out simulation
studies on a CSTR system, which exhibits input multiplicities and change in the
sign of the steady state gain in the desired operating region. The analysis of the
simulation results reveals that the proposed multi rate models are able to capture
the dynamics and the steady state behavior of the reactor reasonably accurately
over a wide operating range. Copyright c°2005 IFAC
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1. INTRODUCTION

Most of the chemical processes like reactors, fer-
menters or high purity distillation columns, ex-
hibit strongly nonlinear dynamics. Development
of model based control schemes for such systems
has been a major area of research over last two
decades (Henson and Seborg, 1997). Most of these
methods assume that all the measurements are
available at a single fast sampling rate, which is
identical to the rate at which manipulated input
moves are made. However, in many of the prac-
tical situations, the primary variables of interest
from control view point (such as concentrations)
are available only at relatively slower rates. Thus,
there has been considerable amount of interest

in developing state estimation and control strate-
gies for multi rate and nonlinear systems (Gudi
and Shah, 1995; Bequette et al, 1991). These
approaches typically assume the availability of a
grey box model developed from first principles.
In many situations such models are either not
available or too difficult to develop. In such a situ-
ation, development of multi rate nonlinear model
directly from the input output plant data is an
attractive option.

There are many alternative nonlinear black
box model structures available in the literature
(Sjoberg et al. 1995). Nonlinear ARX (NARX)
models are relatively easy to develop and appears
to be the most favoured structure for model devel-
opment (Herandez and Arkun, 1993; ; Oggunaike



and Pearson, 1997). Determination of model stru-
ture for this type of models is not an easy task
even for SISO case. Recently, Srinivasarao et al.
(2004) have proposed a method for development
of state space form of NARX models parameter-
ized using generalized orthonormal basis filters
(GOBF), which partially alleviates this difficulty.
The bock oriented nonlinear models is another
most frequently used class of nonlinear models.
Number of researchers have proposed methods for
identification and control based on models with
Weiner and Hammerstein structure. Sentoni et
al. (1998) used DAB Net (Decoupled A-B net)
composed of a decoupled linear dynamic system
followed by neural network to develop nonlin-
ear output error (NOE) type models. The linear
dynamic component is parameterized using Lau-
guerre filters, which are cascaded with a single
hidden layer perceptron. They have used linear
balancing technique on hidden layer of NN as
part of identification procedure to reduce the di-
mensionality of perception inputs. This results in
a large dimensional optimization problem. Also,
they do not make nay attempt to characterize the
unmeasured disturbance component. Recently,
Gomez and Baeyens (2004) have proposed mod-
eling scheme based on Hammerstein model and
Wiener structures, which facilitates unmeasured
disturbance modeling. In their approach the lin-
ear dynamic part is represented by GOBF and
the static nonlinear map is represented by poly-
nomial basis functions. While developing these
models, they impose condition that the nonlinear
output map should be invertible. The constraint
on the invariability of the output map implies
that the identified Wiener models cannot be used
for capturing dynamics of systems exhibiting in-
put multiplicity (Pearson and Pottmann, 2000).
Saha (1999) and Saha et al. (2004) have proposed
NOE type Lauguerre -Wiener models where the
state-output map is constructed as a quadratic
polynomial function. They also demonstrate that
their modeling scheme can adequately represent
dynamics of systems with input multiplicity.

The techniques for development of nonlinear
time series modeling mentioned above require sin-
gle rate input output data and their extension to
deal with multi-rate systems is not obvious. In
fact, identification of fast rate time series mod-
els from multi-rate data is a relatively new area
of research even for linear systems (Li et al.,
2001; Wang et al., 2004). The issue of identi-
fying fast rate nonlinear models from multi-rate
sampled data does not appear to have received
much attention in the literature. This work aims
at the identification of a nonlinear fast rate model
from multi-rate sampled data, which is corrupted
with unmeasured disturbances and measurement
noise. The model identification is carried out in

two steps. In the first step, a MISO fast rate
NOE model with Weiner structure is identified
from multi-rate data. In the next step, a non-
linear auto regressive (NAR) model is developed,
which whitens the residuals. The linear dynamic
component of the Weiner model in either case
are parameterized using GOBF. The efficacy of
the proposed modeling scheme is demonstrated
by carrying out simulation studies on a CSTR
system, which exhibits input multiplicities and
change in the sign of the steady state gain in the
desired operating region.

This paper is organized in four sections.
The next section deals with the proposed model
structure and formulation of parameter estima-
tion problem. In the third section we present a
simulation case study while the conclusions are
presented in the final section.

2. DEVELOPMENT OF NOE+NAR MODEL

In this section, we propose a sequential approach
to the development of models for asymptotically
stable systems. In the first step, we develop a
nonlinear output error model using the fast sam-
pled inputs and the slowly sampled outputs.The
deterministic component of the fast rate model
is parameterized using OBF. The residuals gen-
erated at the slow rate are then used to develop
a noise model, which is also parameterized using
OBF.

2.1 Development fast rate state space model

While developing the fast-rate model for the
multi-rate system under consideration it is as-
sumed that

• Sampling rates for all measurements are in-
teger multiples of some time period called
‘shortest time unit’ (T )

• All actuators are to be manipulated at fre-
quency corresponding to the ‘shortest time
unit’ (T ).

• Some of the outputs are sampled at regular
intervals such that the sampling period is an
integer multiple of T

• The unmodelled disturbances are zero mean
and their effect on the outputs is additive

Thus, the manipulated inputs are changed at
{tk = kT : k = 0, 1, 2, ...} while the output mea-
surements are assumed to be available only
at sampling instants given by the sub-sequence
{k1, k2, k3,...} such that the difference kl− kl−1 =
p (> 1) where p is an integer. Now, consider a
Weiner type MISO fast rate model of the form



x(k +1) =Φx(k) + Γu(k) (1)

y(k) =Ω (x(k)) + v(k) (2)

where Ω( .) : Rn → R represents nonlinear state-
output map. In order to simplify identification
problem, we can choose some canonical parame-
terizations of the (Φ,Γ) pair. For example, Φ can
be chosen to be a diagonal matrix. We choose to
parameterize (Φ,Γ) using GOBF (see Appendix).
Also, the output state map is chosen as quadratic
polynomial function. Thus, the resulting fast rate
Weiner model can be expressed as

x(k +1) =Φ(ξ) x(k) + Γ(ξ) u(k) (3)byu(k) =CT x(k) + x(k)TDx(k) (4)

where ξ represents a vector of GOBF poles andbyu(k) represents output prediction at the fast rate.
The measurement equation at the slow sampling
instant is given as

y(kl) = CT x(kl) + x(kl)
TDx(kl) + v(kl)

Here, k = kl represents the sampling instant and
v(kl) represents un modelled disturbances. We
define prediction error sequence at slow sampling
instants asbv(kl, ξ,θ) = y(kl)−

£
CT x(kl) + x(kl)

TDx(kl)
¤
(5)

where

θ =
£
CT D11 D12 .... DNi,Ni

¤T
Note that D is a symmetric matrix and only n
×(n + 1)/2 elements appear in θ vector. Given
vector of GOBF poles ξ,the least square estimate

of the parameter vector θ can be obtained by
solving the following minimization problem

bθu(ξ) = arg min
θu

1

Ns

NsX
l=1

bv(kl,θ)2 (6)

Ns represents total number of output samples
available. Given a set of GOBF poles ξ, the above
minimization problem can be solved analytically
using the following simple linear regression scheme

bθu(ξ) = (R)−1E (Z(kl)y(kl)) (7)

R=
£
E
¡
Z(kl)Z(kl)

T
¢¤

(8)

where

Z(kl) =
h
(X(k))

T
(Xq(k))

T
iT

Xq(k) =
£
(X1(k))

2 2X1(k)X2(k) ....
¤T

where E (.) represents expected value operator as
defined in Ljung (1987). The parameter estima-
tion procedure outlined above can be easily ex-
tended to a MIMO (r ×m) system by formulating
r MISO identification problems.

The next step is to estimate a model for

the unmeasured disturbances from the estimated
residual sequence bv(kl, ξ,θ). A Nonlinear Auto
Regressive (NAR) model that whitens the residual
sequence can be developed as follows

xv(kl + p) =Ψv(ξv)xv(kl) +Kv(ξv) bv(kl) (9)bv(kl) =CT
v xv(kl) + xv(kl)

TDvxv(kl) + e(kl)(10)

where (ξv) represents the vector of GOBF poles.
Given GOBF pole vector ξv, parameter vector

θv =
£
CT
v Dv,11 Dv,12 .... Dn,Ni,Ni

¤T
can be estimated by linear regression similar to
the deterministic component. The resulting state
space model equation (9) can be rearranged as

xv(kl + p) =Ξ [xv(kl)] +Kve(kl) (11)bv(kl) =CT
v xv(kl) + xv(kl)

TDvxv(kl) + e(kl)

where

Ξ [xv(kl)] =
¡
Ψv +KvC

T
v

¢
xv(kl) +

Kvxv(kl)
TDvxv(kl)

Using above state observer, the output predictions
at the sampling instant k = kl can be given asby(kl) = byu(kl) + CT

v xv(kl) + xv(kl)
TDvxv(kl)

The above formulation assumes that GOBF
parameters can be specified based on some a-priori
knowledge about the system. Alternatively, pole
vector ξ can be estimated by formulated by formu-
lating a nested optimization problem as suggested
by Saha (1999). For example, given fast rate input
sequence {u(0),u(1), ....u(N)} and infrequently
sampled output {y(k1), y(k2), ....y(Ns)}, the least
square estimate of the parameters of the output
error model (3) can be obtained by solving the
following nested minimization problem

bξ = arg min
ξ

1

Ns

NsX
l=1

bv(kl, ξ, bθ)2 (12)

subject to the constrain (9). In addition, the fact
that GOBF poles are stable requires imposition of
following additional constraint

|ξi| < 1 ; i = 1, 2....n (13)

The resulting nonlinear optimization problem is
solved using MATLAB optimization toolbox.The
optimum pole location for the NAR model is also
be obtained in a similar manner.

3. SIMULATION CASE STUDY

The CSTR system under consideration consists
of a reversible exothermic reaction A ­ B. The



dynamic model for simulating the CSTR system
is as follows

dCa

dt
=

Fi
hAc

(Cai − Ca) +K1Ca −K2Cb

dCb

dt
=− Fi

hAc
Cb +K1Ca −K2Cb

dT

dt
=

1

hAc
Fi(Ti − T ) +

−Hr

ρCp
(K1Ca −K2 Cb)

dh

dt
=
1

Ac
(Fi − k

√
h)

K1 = kf exp(−Ef/T ) ;K2 = kbexp(−Eb/T )

The nominal parameters and the operating steady
state used in the simulation studies can be found
in Patwardhan and Madhawan (1993). In the
present work, the output concentration (Cb) and
reactor temperature (T ) in the CSTR are the
two measured outputs of the system. The inlet
flow rate and inlet temperature are used as ma-
nipulated variables and inlet concentration Cai is
treated as unmeasured disturbance. This system
exhibits input multiplicity and change in the sign
of steady state gain in the operating region. The
difficulties associated with controlling such sys-
tems at the optimum operating point have been
discussed in detail by Patwardhan and Madhawan
(1993).

In the present study, shortest time unit (T) is
chosen as 0.1 min i.e. the input moves are changed
after every 0.1 minute. The inlet feed stream con-
tains only A and its concentration is assumed to
fluctuate according to following stochastic process

δCai(k) =
0.05

1− 0.95z−1 e(k) (14)

where e(k) is a white noise sequence with stan-
dard deviation 0.2. Note that Cai(t) is assumed
to be a piecewise constant function during sim-
ulations. A Multilevel Pseudo Random Signals
(MPRS), with standard deviations of 0.275 m3/s
and 19.766 K and switching times of 0.3 and 0.5
min, respectively. The MPRS signals were used to
introduce simultaneous perturbations in both the
inlet flow rate (Fin) and inlet temperature ( Ti ),
respectively. Also, it was assumed that the raec-
tor concentration measumements are available at
the slow rate while temperature . In the present
study two cases where considered. In Case A
the reactor concentration (CB) is sampled at 0.5
min inerval while in Case B it is sampled at
every 1 min. interval. It is further assumed that
concentration measurements are corrupted with
measurement noise, which is a zero mean Gaussian
white noise signal with standard deviation equal
to 0.005. The inputs used to generate validation
data and the unmeasured disturbance introduced
in input concentration are given in figure(2) and
figure(1) respectively.
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Fig. 1. The unmeasure disturbance introduced in
input concentration

Model identification is carried out using data
for generated for 800 minutes (8000 input sam-
ples). In case A the number of output samples
(Ns) is 1600 while in Case B it is 800. The opti-
mum set of poles obtained from the identification
exercise in each case are reported in Table (1)

Table 1. Optimum values of GOBF
poles for case-I and case-II

Ts out u1 u2 e

case-I [0.946 0.827] [ 0.818 0.915] [0.686]
case-II [0.947 0.821] [0.887 0.999] [0.670]

The performance of the identified models is eval-
uated based on the following statistical criteria

• Percentage Prediction Error ( PPE)

PPE =

NX
kl=k1

[y(kl)− ŷ(kl)]
2

NsX
kl=k1

[y(kl)− y]2

× 100

Note that, ȳ in above definition represents
the mean value of the slow sampled measured
outputs data.

• Percentage Estimation Error (PEE)

PEE =

NX
k=1

[y(k)− ŷ(k)]2

NX
k=1

[ey(kl)− ey]2 × 100

Note that ey(k) in the above expression represents
noise free outputs of the process obtained from
simulations.This index cab computed only for
simulated data.

The comparison validation data with p-step a
ahead predictions and infinite horizon predictions
(IHP) for Case A and Case B are given in Figures
(3) and Figure( 4), respctively. The corresponding
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Fig. 2. Manipulated inputs used to generate vali-
dation data
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Fig. 3. Comparision validation data with pstep
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for caseA and case B with validation data

PPE and PEE vlues are listed in table (2). Figure
( 4) and PEE values in Table (2) indicates that
the identified fast rate model generates reasonably
accurate fast rate predictions of concentration.
From table(2), it can be observed that PPE values
for p-step a head predictions are significantly less
than those for the infinite horizon prediction in
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Fig. 5. Comparision of measured and predicted
steady state concentration Cb in the reactor

Table 2. Comparison of PPE and PEE
values

Variable PPE PPEE
Case A P-Step 5.321 13.413

Infinite 23.48 14.174
Case B P-Step 9.201 16.012

Infinite 25.21 16.131

both the cases. This indicates that the identi-
fied NAR model compensates for efect of unmea-
sured disturbances when measurement becomes
available. However, insignificant variation in PEE
values indicates that not much improvement is
observed with respect to intersample predictions.
Figure (5) presents the comparison of the steady
state behavior of the process with that of the
NOE models identified in each case. As can be
seen from this Figure, the identified NOE models
capture the steady state behavior of the system
over a wide operating range around extremum op-
erating point. Note that both the models capture
the change in the sign of the steady state gain
reasonably well and are able to model the input
multiplicity behavior.

4. CONCLUSIONS

This work presents a method for development of a
fast rate nonlinear model using multi-rate input-
output data. The fast rate deterministic model is
developed first from the Input Output data. The
model identification is carried out in two steps. In
the first step, a MISO fast rate NOE model with
Weiner structure is identified from multi-rate data
and residuals are evaluated. In the next step, a
nonlinear auto regressive (NAR) model is devel-
oped, which whitens the residuals. The efficacy
of the proposed modeling scheme is demonstrated



by carrying out simulation studies on a CSTR
system, which exhibits input multiplicities and
change in the sign of the steady state gain in
the desired operating region.The analysis of the
simulation results reveals that the proposed multi
rate models are able to capture the dynamics and
the steady state behavior of the reactor reasonably
accurately over a wide operating range.

Appendix: Parameterizations of Linear Dynamics
using GOBF

Consider a SISO system represented by a strictly
proper stable transfer functionby(z) = G(z)υ(z)

where υ represents input and by represents the
model output. Let {Fk(z) : k = 0, 1, 2, ...} repre-
sent an orthonormal basis for H2 (set of strictly
proper stable transfer functions). Then, model
that approximates G(z) best in an H2 sense is
given by (Van den Hof, 2000)

Gn(z) =
nX
i=1

ciFi(z)

Ninness and Gustafsson (1997) have shown that

Fl(z, ξ) =

q
(1− |ξl|2)
(z − ξl)

l−1Y
i=1

(1− ξ∗i z)
(z − ξi)

forms a complete orthogonal set in H2, where©
ξp : l = 1, 2, ...

ª
is an arbitrary sequence of poles

inside the unit circle appearing in complex con-
jugate pairs. The GOBF can be used to parame-
terize the linear dynamic part of the Weiner type
state space model (Srinivarrao et al., 2004)

x(k +1) = φ(ξ) x(k) + ψ(ξ) υ(k)

y(k) =Ω(x(k)) + ε(k)

where x(k) ∈ Rn is defined as

x(k) =
£
F1(z, ξ)υ(k) ...... Fn(z, , ξ)υ(k)

¤T
Here, ξ ∈ Rl represents the vector of GOBF
poles. The above state space model can be easily
extended to represent a MISO model (Srinivarrao
et al., 2004).
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