
STOCHASTIC APPROXIMATE SCHEDULING
BY NEURODYNAMIC LEARNING

Balázs Csanád Csáji ∗ László Monostori ∗,∗∗

∗ Computer and Automation Research Institute,
Hungarian Academy of Sciences

∗∗ Faculty of Mechanical Engineering,
Budapest University of Technology and Economics

{csaji, monostor}@sztaki.hu

Abstract: The paper suggests a stochastic approximate solution to scheduling
problems with unrelated parallel machines. The presented method is based on neu-
rodynamic programming (reinforcement learning and feed-forward artificial neural
networks). For various scheduling environments (static-dynamic, deterministic-
stochastic) different variants of episodic Q-learning rules are proposed. A way
to improve the avoidance of local minima is also discussed. Some investigations
on the exploration strategy, function approximation and parallelizing the solution
are made. Finally, a few experimental results are shown. Copyright c© 2005 IFAC

Keywords: scheduling algorithms, machine learning, manufacturing systems,
agents, Markov decision processes, neural networks, stochastic approximation

1. INTRODUCTION

Informatics of present time often has to face se-
vere difficulties which arise from incomplete and
uncertain information, in addition, the environ-
ment, in which the applications have to work in,
can change dynamically, it can be non-stationary.
Moreover, complexity problems also have to be
faced, viz. even by static, highly simplified and ab-
stract problems, the available computation power
can be not enough to achieve an optimal solution
in practice (e.g. in the case of NP-hard problems).

One way to overcome these difficulties is to apply
machine learning techniques. It means designing
systems which can adapt their behavior to the
current state of the environment, can extrapolate
their knowledge to unknown, unexperienced cases
and can learn how to find and optimize the solu-
tions of the problems that they have to deal with.

Production control is an important manufacturing
problem, which has all the difficulties that were

mentioned so far. One of the key problems in pro-
duction control is the allocation of resources over
time, namely scheduling. The paper suggests ap-
plying adaptive algorithms, such as reinforcement
learning, artificial neural networks and simulated
annealing, to give a stochastic approximate itera-
tive solution for a generalized scheduling problem.
Most of the presented ideas can be also applied to
other kinds of resource allocation problems.

The structure of the paper is as follows: first, a
static deterministic scheduling problem is defined
and its complexity is highlighted. Next, a rooted
directed graph representation is shown. Then,
a brief introduction to reinforcement learning is
given and variants of episodic Q-learning to dif-
ferent scheduling environments are proposed with
a method that helps to avoid getting stucked in
local minimum places. After that, the exploration
strategy with simulated annealing is analyzed.
Remarks on function approximation and on the
parallelization of the algorithm are also presented.

2. THE PROBLEM OF SCHEDULING

Now, a static deterministic scheduling problem
with unrelated parallel machines is considered:
an instance of the problem consists of a finite
set of tasks V = {v1, v2, . . . vn} together with a
directed acyclic graph G = 〈V, E〉, where E ⊆
V × V represents the precedence constraints (a
partial ordering) between the tasks. A finite set of
machines M is also given with a partial function
that defines the processing times of the tasks on
the machines, p : V ×M → R+, where R+ denotes
the set of strictly positive real numbers. The tasks
are supposed to be non-preemptive (they may not
be interrupted) thus a schedule s can be defined as
an ordered pair s = 〈τ, µ〉 where τ : V → R+

0 gives
the starting time of the tasks and µ : V → M
defines that which machine will process which
task. A schedule s is called feasible if and only
if the following three properties are satisfied:

(s1) All machines process at most one operation
at a time: ¬∃(m ∈ M ∧ v, v′ ∈ V) : µ(v) =
µ(v′) = m ∧ τ(v) ≤ τ(v′) < τ(v) + p(v,m);

(s2) Every machine can process the tasks which
were assigned to it: ∀v ∈ V : 〈v, µ(v)〉 ∈ Dp;

(s3) The precedence constraints of the tasks are
kept: ∀ 〈v, v′〉 ∈ E : τ(v)+p(v, µ(v)) ≤ τ(v′);

If an earliest start time (e : V → R+
0) and a due

date (d : V → R+
0) for each task is also given, then

the feasibility requirements can be extended by:

(s4) Each task must be processed between its
release and due date: ∀v ∈ V : τ(v) ≥ e(v) ∧
τ(v) + p(v, µ(v)) ≤ d(v);

The set of all feasible schedules is denoted by S,
which is supposed to be non-empty (thus, e.g.
∀v ∈ V : ∃m ∈ M : 〈v, m〉 ∈ Dp). The objective of
scheduling is to produce a schedule that minimizes
(or maximizes) a performance measure κ : S → R,
which is usually depends on the task completion
times, only. For example, if the completion time
of the task v ∈ V (according to the schedule
s ∈ S) is denoted by Cv(s) = τ(v)+p(v, µ(v)) then
a commonly used performance measure can be
defined by Cmax(s) = max{Cv(s) | v ∈ V }, which
is often called total production time or make-span.

Naturally, not any function is allowed as a per-
formance measure. The performance measures are
restricted to those functions which have the prop-
erty that the schedule can be uniquely gener-
ated from the order in which the jobs are pro-
cessed through the machines, e.g., by semi-active
timetabling. For example, regular measures, which
are monotonic in completion times, have this
property. Note that all of the usually used per-
formance measures are regular. In this way, the
scheduling problem becomes a combinatorial op-
timization problem determined by 〈V, E,M, p, κ〉.

It is easy to see that the presented parallel ma-
chine scheduling problem is a generalization of
the standard job-shop scheduling problem, which
is known to be strongly NP-hard (Lawler et al.,
1993), therefore this problem is also strongly NP-
hard. Thus, unless P = NP , no polynomial time
optimal algorithm exists. Moreover, if the used
performance measure is Cmax, there is no good
polynomial time approximation of the optimal
scheduling algorithm (Williamson et al., 1997).

The presented problem is both static and deter-
ministic. However, it may be argued that most
practical scheduling problems are both dynamic
and stochastic. The stochastic variant of the prob-
lem arises, when the processing times are given
by independent random variables. In stochastic
scheduling there are some information that will
only be available during the execution of the plan.
According to the usage of these data, two basic
types of scheduling techniques are considered.

A static (off-line) scheduler has to make all deci-
sions before the schedule actually being executed
and it cannot take the actual evolution of the
process into account. It has to build a schedule
that can be executed with high probability.

For a dynamic (on-line) scheduler it is allowed to
make the decisions as the scheduling process actu-
ally evolves and more information becomes avail-
able. The paper focuses on dynamic scheduling
techniques. Note that a dynamic solution is not a
simple 〈τ, µ〉 pair, but instead a scheduling policy
(defined later) which controls the production.

First, the static and deterministic problem will be
investigated, however later different learning rules
for the dynamic and stochastic cases will also be
suggested. Experimental results for the dynamic,
on-line scheduling case will be presented, as well.

3. GRAPH REPRESENTATION

Many combinatorial optimization problems can
be represented as the application of some op-
erators to an initial element. In this case S is
extended with partial objects, such as the empty
object. The set of complete objects, in which the
optimum is searched, is denoted by Sc ⊆ S. For
the investigated scheduling problem, the initial el-
ement is the empty schedule and applying an oper-
ator to an object means that a task is scheduled to
one of the machines. Formally, this representation
contains an initial element s0 ∈ S, a set of possible
operators A = {a : Da → S | Da ⊆ S} and a func-
tion A : S → P(A) which assigns to each object a
set of operators that can be applied to it. It follows
that these problems have a rooted directed graph
representation: the nodes are the elements of S,
the root is s0 and the edges are labeled with A. For

���

�����

�
	 �

��������������

��� ���� �

 "! #$"% & '
()*
+ , -". /

0214365
798:<; =2>�?

@ A
BDCFEGIHJLKM2NPO

Q

RTS

UWVYXTZ

[]_^L`ba

cPdfehgji
kmlonqpsrut

vswyxfz<{j|u}_~����o���s�o���

���4���_�_�o�
���o���s�o���

[��_�����q

¡�¢L£�¤L¥§¦

¨�©Lª�«L¬®

¯�°L±�²L³�´

µ�¶L·�¸L¹�º

Fig. 1. Graph representation

a lot of problems (e.g. scheduling problems, the
traveling salesman problem 1) this rooted graph
has special properties (see Fig. 1.):

(g1) The graph is a tree and its leaves are labeled
exactly with the elements of Sc;

(g2) All paths form the root to the leaves have the
same path length (that is denoted by L ∈ N);

(g3) The operators change the performance of the
object, which they have applied to, with only
a ”small” amount: ∃α, β ¿ (κmax − κmin) :
∀s ∈ S : ∀a ∈ A(s) : α ≤ κ(a(s))− κ(s) ≤ β;

where κmax = max{κ(s) | s ∈ Sc} and similarly
for κmin. E. g., for the TSP: L = |V |−1 (where V
is the set of ”cities”) and α = min{w(e) | e ∈ E},
β = max{w(e) | e ∈ E}. For the scheduling
problem: L = |V |, and if κ = Cmax then α = 0
and β = max{p(v, m) | v ∈ V ∧ m ∈ M}.
If the algorithm searches by moving from the root
to a leaf, then at every s ∈ S \ Sc it must make a
decision which operator to apply from A(s). The
algorithm can safely skip those s nodes which have
the property: κ(s) + (L − i) α ≥ κtm, where i
denotes the level of the node (its distance from
the root) and κtm (temporary minimum) denotes
the performance of the so far found best solution.

Algorithms which use some bounding procedures
(such as the aforementioned) to purge the search
tree but otherwise they search exhaustively are
often referred as branch and bound.

Note that a natural way of building domain spe-
cific knowledge into the system is to control the
generation of A(s) and do not allow operators
which result in an object that is surely (or with
high probability) not lead to an optimal element
(e.g., some cutting conditions are met).

1 TSP: given a complete weighted graph G = 〈V, E, w〉
find a Hamilton circuit with the smallest possible weight.

4. REINFORCEMENT LEARNING

Reinforcement learning (RL) is a behavioral learn-
ing method, which is performed through interac-
tions between the learning system and its envi-
ronment. The modern approach of reinforcement
learning is often called neurodynamic program-
ming because its theoretical foundation is based
on dynamic programming and its learning capac-
ity is often provided by artificial neural networks.

The operation of a general reinforcement learning
system can be characterized as follows:

(r1) The environment evolves by probabilistically
occupying a finite set of discrete states, S.

(r2) For each state s ∈ S there exits a finite set
of possible actions that may be taken, A(s).

(r3) Each time the system takes an action a ∈
A(s), a certain reward is incurred, r ∈ R.

(r4) States st, actions at and rewards rt are taken
place at discrete time steps, t ∈ N.

The goal of the system is to maximize its expected
cumulative reward (the profit in the long run).

The used notations show that the building of a
schedule from an empty one by applying operators
from A(s) fits well into the RL framework.

Using reinforcement learning for job-shop schedul-
ing was first proposed in (Zhang and Dietterich,
1995). They used the TD(λ) method with itera-
tive repair to solve a static scheduling problem,
namely the NASA space shuttle payload pro-
cessing problem. A multi-agent based scheduling
with learning agents was presented in (Brauer and
Weiß, 1998), which used a simplified version of Q-
learning with selfish and non-cooperating agents.
Aydin and Öztemel developed an improved ver-
sion of Q-learning, which they called Q-III learn-
ing that they have built into an agent-based sys-
tem, however, scheduling was made in a central-
ized way (Aydin and Öztemel, 2000). The authors
of this paper have introduced the first version of
the presented ideas in (Csáji et al., 2003).

The paper suggests using episodic learning, thus
the system has to face the schedule building pro-
cess repeatedly. It gets 0 immediate reward in
every s ∈ S\Sc and κ(s) reward at the end of each
episode, when s ∈ Sc. Its aim is to minimize these
values. An ostensible difference from the classical
viewpoint of RL is that the scheduling problem is
a minimization problem, however it is straightfor-
ward to modify the different learning formulas by
this criteria. In the following investigations, the
minimization point of view will be applied.

The Markov property is satisfied in these kinds of
systems. Markov decision processes are based on a
policy π for selecting actions in the problem space.
The policy defines the actions to be performed in

each state. Formally, a policy π : S → ∆(A) is
a function from states to probability distributions
over actions. The probability of taking action a
in state s is denoted by π(s, a). The action-value
function Qπ : S × A → R is defined by the
expected total reward when the system is in state
s, it takes action a and it follows π thereafter:

Qπ(s, a) = Eπ

[∞∑

k=0

γkrt+k | st = s, at = a

]
, (1)

where rt is the reward at time t and γ ∈ [0, 1] is
a parameter called the discount rate. The state-
value function for policy π is defined by:

V π(s) = E [Qπ(s, π(s))] , (2)

where π(s) denotes a random variable that gives
the action selected by control policy π in state s.
In the presented system episodic learning is used
during scheduling, therefore the system learns
from episode-by-episode (and not step-by-step).
One episode is the building of a complete schedule,
or in other words: moving in the representation
tree from the root to a leaf. The system gets
reward (penalty) at the end of each episode, only
and the environment is deterministic, therefore
the value function can be written in the form:

V π(s) =

κ(s) if s ∈ Sc

∑

a∈A(s)

π(s, a)V π(a(s)) if s /∈ Sc
(3)

In these type of systems γ has no role, thus γ = 1
was supposed. A policy π is better than or equal
to a policy π′ if and only if V π(s) ≥ V π′(s) for
all s ∈ S. There is always at least one policy,
the optimal policy, that is better than or equal
to all other policies. These policies are denoted by
π∗. Although there may be many optimal policies,
they all share the same value function, called the
optimal value function, denoted by V ∗ or Q∗.

As in most reinforcement learning work, the aim
of the presented learning system is to learn the
optimal value function rather than directly learn-
ing an optimal policy. To learn the value function
a modified version of Q-learning is applied. The
general version of the one-step Q-learning rule is:

δt = αt

[
rt+1 −Qt(st, at) + γ min

a∈A(st+1)
Qt(st+1, a))

]
,

Qt+1(st, at) ← Qt(st, at) + δt, (4)
where αt is a sequence that defines the learning
rates of the system. The Q values converge almost
surely to the optimal action-value function if the
following three conditions are satisfied:

(q1)
∑∞

t=1 αt = ∞ (thus, any value can be
reached in finitely many steps);

(q2)
∑∞

t=1 α2
t < ∞ (which is required to show the

convergence with probability one);
(q3) Each state action performed infinitely often.

Note that (q1) and (q2) can be easily satisfied, for
example, by αt = 1/t. Satisfying (q3) requires an
exploration strategy (e.g. an ε-soft strategy). The
next section will briefly investigate such methods.
If both (q1), (q2) and (q3) are satisfied then

P
[

lim
t→∞

‖Qt −Q∗‖∞ = 0
]

= 1, (5)

for a proof and learning rates for Q-learning see
(Even-Dar and Mansour, 2003). If the environ-
ment is deterministic, the Q-learning formula can
be rewritten to use state-value functions:

δt = αt

[
rt+1 − Vt(st) + γ min

a∈A(st)
Vt(a(st))

]
,

Vt+1(st) ← Vt(st) + δt, (6)

this approach has the advantage that it requires a
much smaller storage space and the convergence
of learning will also be faster, since the algorithm
has to maintain a much smaller number of values.
This version can be called V-learning 2 . If episodic
learning is applied, this rule can be simplified:

Vi+1(sij) =

κ(sij) if sij ∈ Sc,

min
a∈A(sij)

Vi(a(sij)) if sij /∈ Sc,
(7)

where i ∈ N denotes the episode number, j ∈
{0, . . . , L} denotes the level number in the tree,
and sij ∈ S are the states which were visited
during episode i. If the system is also static, as e.g.
in the scheduling problem presented in Section 2,
this learning rule can be even further simplified:

Vi+1(sij) ← min{Vi(sij), κ(siL)}, (8)

where κ(siL) is the reward in episode i (siL ∈ Sc).
In that case, the V values should set to extremal
ones prior to learning, e.g., V (s) = κ(s0) + L · β
for all s ∈ S is a good choice. For stochastic
problems the Q-learning version should be used,
however the learning formula presented in (4) can
be modified for episodic decision processes:

δij = αi[κ(siL)−Qi(sij , aij)+ min
a∈A(sij+1)

Qi(sij+1, a))]

Qi+1(sij , aij) ← Qi(sij , aij) + δij , (9)

Summing up, the paper suggests using episodic Q-
learning for the scheduling problem, but depend-
ing on the task and the environment (whether it is
deterministic or stochastic, static or dynamic) dif-
ferent learning rules are suggested. Finally, Table
1. summarizes the advised learning formulas.

Table 1. Advised episodic learning rules

Static env.: Dynamic env.:

Deterministic: V-learning (8) V-learning (7)

Stochastic: Q-learning (9) Q-learning (9)

2 Note that sometimes TD(λ) is also called V-learning.

5. EXPLORATION STRATEGY

In this section the exploration strategy for the
static (stationary) case is investigated. In order
to ensure the convergence of Q-learning, one must
guarantee that each state-action pair is continue
to update. To ensure that, the system has to make
explorations. The class of ε-soft algorithms can
be defined by the property that they work in
two ways. Mostly they make exploiting actions, in
which they use the previously gathered informa-
tion and select an object which will be ”good”
with high probability, however, sometimes they
make exploring actions as well and select solutions
randomly, to gather more information on S.

An often used technique to balance between explo-
ration and exploitation is the Boltzmann formula.
In the suggested algorithm the policy π is com-
puted from the value-function estimations with
a modified Boltzmann formula. This formula is
modified to avoid the property of finding the same
solutions over and over again (getting stucked
in a local minimum). To present this two new
functions are required. Ti : S → N is a trial count-
ing function, Ti(s) shows that how many times
visited the algorithm the state s until iteration i.
N : S → N is a terminal node number estimating
function, N(s) gives the number of leaves that can
be reached from the node s, or at least it gives an
upper estimation of this. The Boltzmann formula:

πi(s, a) =
e%i(a(s))/τ

∑
b∈A(s)

e%i(b(s))/τ
, (10)

where i is the episode number and τ is the Boltz-
mann (or Gibbs) temperature. High temperatures
cause the actions to be (nearly) equiprobable,
low ones cause a greater difference in selection
probability for actions that differ in their value
estimations. The %i function is defined by:

%i(s) =
(

1− Ti(s)
N(s)

)
· 1
Vi(s)

, (11)

if %i(s) approaches 0 for an s ∈ S that means
the subtree starting at s was roughly exhaustively
searched. Note that ∀s ∈ S : T0(s) = 0 and nor-
mally Ti(s) is incremented by 1 in every episode
if s was visited during that episode, however if
there was a cut at a node s′ somewhere under s
then Ti(s) must be increment by N(s′) instead.

This Boltzmann formula can be easily rewritten
to use action-value functions (Q(s, a)).

This approach is often extended by simulated
annealeing and τ is decreased over time. One
can even set different temperatures for different
states, however, it can be shown that the rate
of decreasing should be bounded from below by
o(1/ln(Ti(s))) to ensure sufficient exploration.

6. FUNCTION APPROXIMATION

It is possible that for large systems, the state
space S of reinforcement learning is too big to fit
to the memory. In this case a numerical function
approximator should be used to approximate the
optimal value function. These techniques could
further increase the performance of the system by
extrapolating the estimations to the states which
were never experienced (generalization).

If the value function V (s) is represented by a
function ∀s ∈ S : f(s, w) ≈ V (s) where w ∈ Rd

is a vector containing the parameters of the ap-
proximation (e.g., weights in the case of artificial
neural networks) then to learn the optimal value
function, V (λ) could be applied. At step t+1, the
error at time t can be computed as (V-learning):

δt = rt+1 − f(st, w) + γ min
a∈A(st)

f(a(st), w), (12)

then the smoothed gradient can be computed:

et = ∇wf(st, w) + λ et−1, (13)

finally, the parameters can be updated:

∆w = αt δt et, (14)

where λ ∈ [0, 1] is a smoothing parameter that
combines the previous gradients with the current
one (et), and αt is the learning parameter. Again,
it is straightforward to modify this method for
action-value functions (f(s, a, w) ≈ Q(s, a)).

7. DISTRIBUTED OPTIMIZATION

Because its complexity, scheduling is a computa-
tionally very expensive process and therefore it
is important to calculate it in a distributed way.
If a common main memory is available to the
processors, then it is straightforward to parallelize
the given solution: each processor searches in S
independently, but they all share the same value
function (and the same trial counting function).

A more interesting case, when the scheduling is
made in a multi-agent system and not only the
computation but also the memory is local to the
agents, thus the global information is eliminated.
A multi-agent system is called heterarchical, if
the agents communicate as peers, no fixed mas-
ter/slave relationships exist. The advantages these
heterarchical systems include: self-configuration,
scalability, fault tolerance, massive parallelism,
reduced complexity, increased flexibility, reduced
cost and emergent behavior (Ueda et al., 2001).

If the agents cooperate intelligently, each agent
can benefit from the other agents information
(Tan, 1993). There are several ways of coop-
eration: the agents can communicate instanta-
neous information, episodes or policies, etc. For

�����

���	�

���

���	�

�	���

�����

���	�

�����

 �!	"

$&% '&()+* ,.- /�021 354�6 758�9 :<;+= >�?&@

Fig. 2. Managing changes during scheduling

an overview on distributed reinforcement learn-
ing, see (Barto and Mahadevan, 2003). For the
scheduling case, this paper suggests that the
agents periodically communicate a fixed number
of their best episodes since the last synchroniza-
tion (and by this way they help improving each
others state or action value functions), but other-
wise they do their stochastic search independently.

8. EXPERIMENTAL RESULTS

In order to verify the above algorithm in dynamic
environments, experiments were carried out. In
the test program V-learning (7) was used and the
aim of scheduling was to minimize the maximum
completion time (Cmax). The adaptive features of
the algorithm was tested by confronting it with
unexpected events, such as: machine breakdown,
new machine, new job and job cancellation.

In Fig. 2. the x-axis represents time, while the
y-axis the achieved performance measure. It was
made by averaging hundred random samples (run-
time results). In this test 20 machines were used
with few dozens of jobs. In all test cases at time
t = 100 there were unexpected events. The re-
sults show that the presented system is adaptive,
because it did not recompute the whole schedule
from scratch, but it tried to use previously gath-
ered information from the past. The performance
measure which would arise if it recomputed the
whole schedule is drawn in a broken line.

9. CONCLUDING REMARKS

The paper presented a neurodynamic program-
ming based solution to a scheduling problem with
unrelated parallel machines. Different Q-learning
rules for various scheduling environments were
proposed. The exploration strategy, parametric
function approximation and the parallelization of
the solution were briefly investigated. Some pre-
liminary experimental results were also showed.

There are several further research directions. For
practical reasons, it would be important to handle

set up times, transportations, storage spaces, pro-
duction costs, etc., as well. The optimal represen-
tation in the interest of function approximation
is also an open question. Finally, application of
the described algorithm to other combinatorial
optimization problems, would also be promising.

10. ACKNOWLEDGEMENTS

This research was partially supported by the
National Research and Development Programme
(NKFP), Hungary, Grant No. 2/010/2004 and by
the Hungarian Scientific Research Fund (OTKA),
Grant No. T049481 and T043547.

REFERENCES

Aydin, M. E. and E. Öztemel (2000). Dy-
namic job-shop scheduling using reinforce-
ment learning agents. Robotics and Au-
tonomous Systems 33, 169–178.

Barto, A. and S. Mahadevan (2003). Recent ad-
vances in hierarchical reinforcement learn-
ing. Special Issue on Reinforcement Learning,
Discrete Event Systems 13, 41–77.

Brauer, W. and G. Weiß (1998). Multi-machine
scheduling - a multi-agent learning approach.
In: Proceedings of the 3rd International Con-
ference on Multi-Agent Systems. pp. 42–48.

Csáji, B. Cs., B. Kádár and L. Monostori (2003).
Improving multi-agent based scheduling by
neurodynamic programming. In: First Inter-
national Conference on Holonic and Multi-
Agent Systems for Manufacturing. Lecture
Notes in Computer Science. pp. 110–123.

Even-Dar, E. and Y. Mansour (2003). Learn-
ing rates for Q-learning. Journal of Machine
Learning Research 5, 1–25.

Lawler, E. L., J. K. Lenstra, A. H. G. Rinnooy
Kan and D. B. Shmoys (1993). Sequencing
and scheduling: algorithms and complexity.
Handbooks in Operations Research and Man-
agement Science 4, 445–522.

Tan, M. (1993). Multi-agent reinforcement learn-
ing: independent vs. cooperative learning. In:
Proceedings of the 10th International Confer-
ence on Machine Learning. pp. 330–337.

Ueda, K., A. Márkus, L. Monostori, H. J. J.
Kals and T. Arai (2001). Emergent synthesis
methodologies for manufacturing. Annals of
the CIRP 50(2), 535–551.

Williamson, D. P., L. A. Hall, J. A. Hoogeveen,
C. A. J. Hurkens, J. K. Lenstra, S. V. Sevast-
janov and D. B. Shmoys (1997). Short shop
schedules. Operations Research 45, 288–294.

Zhang, W. and T. Dietterich (1995). A reinforce-
ment learning approach to job-shop schedul-
ing. In: 14th International Joint Conference
on Artificial Intelligence. pp. 1114–1120.

