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1. INTRODUCTION

A separated design of a globally stabilizing state feed-
back and of a globally stabilizing observer does not
automatically lead to a stable closed-loop in nonlin-
ear feedback design. Additional effort is necessary
to guarantee global asymptotic stability. For example,
either to redesign the observer or to redesign the state
feedback. This is usually done by making the observer
sufficiently fast, i.e, to use high-gain observers (Atassi
and Khalil, 2000), or by making the state feedback
sufficiently robust, e.g., to use (i)ISS-like concepts
(Angeli et al., 2004). Both strategies are quite suc-
cessful in control theory. But often, one would like
to design the state feedback and the observer com-
pletely independent from each other. For example, in
control practice one would like to replace an “old”
state feedback by a “new” one without modifying the
observer. However, a true modular design of the state
feedback and the observer, i.e., a certainty-equivalence
implementation, is in the general nonlinear case not
possible. Due to this lack of a general nonlinear sepa-
ration principle, one has to assume at least an inherent
property in one of the two components (feedback or

observer), in order to guarantee stability when the loop
is going to be closed. Since in control practice, often
optimal feedbacks with respect to a certain perfor-
mance measure are applied, it makes sense to assume
that the state feedback which is part of the control loop
satisfies a certain performance measure. Therefore, the
present work exploits the inherent robustness of opti-
mal state feedback to establish a simple global sepa-
ration result for nonlinear control systems. More pre-
cisely, a global separation result for nonlinear control
systems which are affine in the input is established.
It is assumed that the globally stabilizing state feed-
back is (inverse) optimal with respect to the classical
integral performance measure: “u-squared plus a posi-
tive definite function of the states”. Such performance
measures are well known for example from LQR the-
ory, and often used in control practice. Typical exam-
ples are feedback design methologies which are based
on inverse optimal design or on model predictive con-
trol (Sepulchre et al., 1997; Magni et al., 2001). Fur-
thermore, it is assumed there, that the feedback has
to satisfy an asymptotic polynomial growth condition.
For example, this asymptotic growth rate condition
may be helpful in case of polynomial control systems



with a polynomial stage cost. Finally, it is assumed
that the observer in the control loop is globally asymp-
totically stable. As a result, global asymptotic stability
of the closed-loop is established.

The remainder of the paper is organized as follows:
In Section 2, the problem formulation is presented.
In Section 3 the basic idea, an overview about exist-
ing approaches in the literature, and the main results
are established. The main results of this paper are
a global separation result for control affine systems
that is based on inverse optimality and on an asymp-
totic polynomial growth rate condition. Concluding
remarks are given in Section 4.

NOTATIONS. A function V : R
n → R is called

positive definite, if V (0) = 0, V (x) > 0,∀x ∈ R
n \

{0} and A matrix P ∈ R
n×n with entries (P )ij

is positive definite if xT Px > 0,∀x ∈ R
n \ {0}.

The row vector Vx(x) = ∇V (x) = (∂V /∂x)(x)

denotes the derivative of V with respect to x. Let
R+ denote the set of positive real numbers, then K

is the class of functions from R+ to R+ which are
zero at zero, strictly increasing, and continuous. K∞

is the subset of class-K functions that are unbounded.
The Euclidian norm of x ∈ R

n is denoted by ‖x‖. 0

denotes a scalar zero, a zero vector, or a zero matrix
respectively.

2. PROBLEM FORMULATION

The question studied in this paper is the following:

(a) Given a nonlinear control system of the form

ẋ = f(x) + G(x)u

y = h(x),
(1)

where x ∈ R
n is the state, u ∈ R

q is the input
and y ∈ R

p the output. f : R
n → R

n, G :

R
n → R

n×q , and h : R
n → R

p, are assumed to
be sufficiently smooth with f(0) = 0, h(0) = 0.

(b) Given a globally asymptotically stabilizing state
feedback

u = k(x) = −
1

2
R(x)−1GT (x)V T

x (x), (2)

for the control system (1) which is assumed to be
(inverse) optimal with respect to the following
performance measure:

J =

∫ ∞

0

q(x(t)) + uT (t)R(x(t))u(t) dt, (3)

i.e., the following Hamilton-Jacobi-Bellman (HJB)
equation is satisfied:

Vx(x)f(x) + Vx(x)G(x)k(x)+

q(x) + k(x)T R(x)k(x) = 0,
(4)

where q is a positive definite function and R is
a positive definite matrix function with R(x) =

r(x)R, r(x) ≥ 1 and R is a positive definite
matrix. V is assumed to be a positive definite,
radially unbounded C2 function.

(c) Given a state observer

˙̂x = f̂(x̂, y, u) (5)

for the control system (1) such that the observer
error e = x− x̂ is globally asymptotically stable.
More precisely, it is assumed that there exists a
Lyapunov function W such that

We(e)a(e, x) < −α(W (e)), (6)

where ė = a(e, x) is the observer error dynamics
and α is a differentiable, radially unbounded and
positive definite function. For example observers
which have a linear error dynamics in appropri-
ate coordinates satisfy this assumption. Alterna-
tively and less restrictive is the assumption that
for an appropriately chosen initial value, lets say
x̂0 = 0, the observer error e(t) = x(t) − x̂(t)

converges to zero for t → ∞.

Question: Under which additional assumptions is the
closed-loop (1),(5),(2) (u = k(x̂)) (see Fig. 1), glob-
ally asymptotically stable?

system
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control

state

Global
state

observerfeedback

(Inverse)
optimal

yu
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Fig. 1. Problem setup.

3. MAIN RESULTS

In this section, the main results are established, start-
ing with some motivating considerations as well as
some overview of existing approaches in the literature.

In the literature, there exists at least three concepts
to establish a separation result: The high-gain con-
cept (Atassi and Khalil, 2000), the (i)ISS-like concept
(Angeli et al., 2004), and the concept based on cas-
cades (Loria, 2004; Arcak et al., 2002; Sepulchre et
al., 1997). In the present work, the latter point of view
is taken into account. In particular, the basic idea of
the proposed separation principle is based on the point
of view to consider the observer error as an exogenous
error system. For this, the closed-loop is considered as
cascade in (x, e)-coordinates:

ẋ = f(x) + G(x)k(x + e)

ė = a(e, x).
(7)



As stated in Section 2, the e-subsystem is assumed to
be asymptotically stable with a Lyapunov function W

for the e-subsystem such that W (e) > 0 and

We(e)a(e, x) < −α(W (e)), (8)

for all nonzero e, x. A rather simple approach to
establish asymptotic stability of the closed-loop (7) is
to use a Lyapunov function candidate for the closed-
loop which is separated in x and e,

V (x) + W (e) > 0, (9)

and to try to establish that the derivative of the Lya-
punov function candidate with respect to the closed-
loop trajectories is negative definite, i.e.,

Vx(x)(f(x) + G(x)k(x + e)) + We(e)a(e, x) < 0.

Observe now, if W is a Lyapunov function of the e-
subsystem (8), so is c1W + c2W

2, ci > 0 a Lya-
punov function. Or more generally, if s is a differen-
tiable strictly monotonically increasing function, then
s(W (e)) is a Lyapunov function of the e-subsystem.
This rescaling argument is not new and is frequently
used in Lyapunov-based designs, cf. e.g. (Sepulchre et
al., 1997; Praly and Arcak, 2004). Hence by using the
Lyapunov function candidate V (x) + s(W (e)), one
gets for the derivative

Vx(x)(f(x) + G(x)k(x + e))+

s′(W (e))We(e)a(e, x)
︸ ︷︷ ︸

−α(e)

< 0, (10)

where s′ denotes the derivative of s = s(W ) with
respect to W . The fact that s′ can be made large
suggests that the expression −s′(W (e))α(W (e)) can
be made arbitrarily negative 1 . Hence, one could pose
the problem of closed-loop stability as follows: If
there exists a differentiable, positive definite function
ρ, such that

Vx(x)f(x) + Vx(x)G(x)k(x + e) < ρ(W (e)) (11)

holds for all x with ρ(W (e)) ≤ s′(W (e))α(W (e)),
then the closed-loop is globally asymptotically stable.
Alternatively, this holds also if that the function

ρ̃(e) := max
x∈Rn

Vx(x)(f(x) + G(x)k(x + e)) (12)

and the rescaling function s, defined via ρ̃(e) ≤

s′(W (e))α(W (e)), is well-defined. A closer look on
(11), which is V̇ (x) < ρ(W (e)), reveals some con-
nections to results in the literature, namely:

(i) In case ρ(W (e)) ≤ M , boundedness of the
solutions x = x(t), which is a crucial building
block in global separation results, is guaranteed.
For example, this was exploited in (Praly and
Arcak, 2004), but in a more general setup.

(ii) In case of replacing ρ in (11), with a class-
K∞ function, and by adding a positive definite

1 For generalizations, one can additionally rescale also V .

function −γ(‖x‖) on the right side, the inequal-
ity turns into an iISS (integral-input-to-state sta-
bility) conditions. ISS and iISS are often used
concepts to guarantee boundedness of solutions
(Arcak et al., 2002).

(iii) If one integrates (11), that is,

V (x(t)) − V (x(0)) <

∫ t

0

ρ(W (e(τ)))dτ, (13)

and if the value of the integral has a finite value
for t → ∞, then boundedness of the solutions
x = x(t) is guaranteed, in case of e = e(t)

exists. High-gain concepts in combination with
local Lipschitz assumptions, which avoid finite
escape phenomena, allow to make the value of
the integral arbitrarily small under certain condi-
tion, like no peaking etc.

(vi) That boundedness of the solutions is necessary
and sufficient, is also justified by following ap-
pealing statement from cascaded systems re-
sults (Seibert and Suarez, 1990) (Theorem 1.1):
“boundedness + global asymptotic stability of
each subsystem of the cascade implies global
asymptotic stability of the cascaded system”.

This shows that boundedness plays a central role and
appears in one or the other form as assumption in most
if not all separation theorems. As already mentioned,
many results in the literature can be seen from this
particular view point. Related conditions on forward
completeness, i.e., existence of the solutions for all
t ≥ 0, can be found in (Angeli and Sontag, 1999).
Hence, a central question is: How can one establish
an easy-to-use setup to guarantee boundedness of the
solutions. The purpose of the next theorem, which is
the main result, is to show that an (inverse) optimal
state feedback with an asymptotic polynomial growth
rate in conjunction with an asymptotic stable observer
is sufficient to guarantee existence of the solution and
global asymptotic stability of the closed loop. This is
done by utilizing (2), (4), (6), (7) and (11).

Theorem 1. Suppose all assumptions made in Section
2 hold. Moreover, suppose there exists a polynomial
function p = p(λ, x) of minimal degree in λ for
a given (fixed) x such that the feedback u = k(x)

defined by (2) grows asymptotically less than polyno-
mial, i.e.,

lim
λ→∞

‖k(λx)‖

p(λ, x)
= 0, (14)

for any given (fixed) x and suppose the derivative of
(2) satisfies

lim
λ→∞

‖λk′(λx)‖

p(λ, x)
= 0, (15)

for any given (fixed) x. Then the closed-loop (7) is
globally asymptotically stable.



Proof. First, it is shown that there exists a positive
definite function ρ, such that

Vx(x)f(x) + Vx(x)G(x)k(x + e) < ρ(W (e)) (16)

holds for all x. Adding and subtracting k(x) in (16)
leads to

Vx(x)f(x) + Vx(x)G(x)k(x) + (17)

Vx(x)G(x)(k(x + e) − k(x)) < ρ(W (e)).

From the HJB equation (4) and from (2), one arrives
at

−q(x) − k(x)T R(x)k(x) (18)

−2k(x)T R(x)(k(x + e) − k(x)) < ρ(W (e)).

Invoking Hadamard’s Lemma (see Appendix), i.e., a
mean value theorem for vector-valued functions, leads
to

−q(x) − k(x)T R(x)k(x) (19)

−2k(x)T R(x)

[∫ 1

0

kx(x + θe)dθ

]

e < ρ(W (e)).

It has to be shown now, that the left hand side of the
inequality (19) is bounded from above for any given
(fixed) e. The idea is to show that −k(x)T R(x)k(x)

dominates −2k(x)T R(x)
[∫ 1

0
...

]

e for ‖x‖ sufficiently

large. For this, the functions p and k are considered
as functions of λ which are parametrized in x. Notice
that it is enough to parameterize all x-directions, i.e.,
to parametrize the compact set {x | ‖x‖ = 1}. From
the assumptions made in Theorem 1, i.e., Equation
(14) and (15), the derivative of the state feedback
k′(λx) = kx(λx)x grows with a growth rate of one
degree less than that of the state feedback k(λx). This
follows from

lim
λ→∞

‖λk(λx)‖

p(λ, x)
6= 0. (20)

since p is assumed to be of minimal degree in λ for a
given (fixed) x and from

lim
λ→∞

‖λk′(λx)‖

p(λ, x)
= 0. (21)

Therefore, because of this asymptotic polynomial be-
havior of u = k(x) = − 1

2R(x)−1GT (x)V T
x (x),

−k(λx)T R(λx)k(λx) (22)

−2k(λx)T R(λx)

[∫ 1

0

kx(λx + θe)dθ

]

e < 0,

is satisfied for any given (fixed) x, e and for λ suffi-
ciently large. Notice that R is diagonal and bounded
from below by R. The integration in the second term
does not affect the polynomial growth rate of kx, since
the integration is w.r.t. θ which varies between zero

and one and e is given (fixed). Therefore, the left hand
side of (19) is bounded from above for a given fixed
e and thus, ρ is well-defined. Notice also if k grows
less than a linear function, then it follows from the
Assumptions that the derivative k′ has to approach
asymptotically to zero. Second, it is shown that the
closed-loop (7) is stable. This is done, via inequality
(10). One can define, for example, a desired rescaling
function s by

s′(ω) =







ρ(ω)

α(ω)
+ ε : ω > 1

1 : ω ≤ 1,
(23)

with ε > 0, which is well-defined for all ω. Note that
s′ can be also chosen in such a way, that s is smooth.
However, from such a rescaling function follows, that
inequality (10) holds for all e with W (e) > 1. To
establish boundedness of the closed-loop solutions
x = x(t), e = e(t), it is shown now that (10)
even holds for all e with W (e) ≤ 1 in case of
‖x‖ being sufficiently large. In particular, from (22)
follows immediately that (10) holds for all e with
W (e) ≤ 1 in case of ‖x‖ being sufficiently large.
More precisely, there exists a λ̄ such that for all
(λx, e) with (x, e) in the compact set {(x, e) | ‖x‖ =

1,W (e) ≤ 1} and with λ > λ̄, the inequality (22) is
satisfied. Therefore (10), i.e., the derivative of V (x)+

s(W (e)) holds for all e and all x with ‖x‖ ≥ λ̄. Thus
the closed-loop solutions of (7) are bounded. Finally,
by the result of (Seibert and Suarez, 1990) (Theorem
1.1: “boundedness + global asymptotic stability of
the subsystems ⇒ global asymptotic stability of the
cascade”), asymptotic stability of the closed-loop (7)
follows. 2

From this result follows immediately:

Corollary 1. Suppose all assumptions made in Sec-
tion 2 hold. Moreover, suppose that the state feedback
u = k(x) defined by (2) is a polynomial function in
x. Then the closed-loop (7) is globally asymptotically
stable.

Remark 1. An alternative growth condition to (14)
and (15) is the following condition:

lim
‖x‖→∞

kx(x + c)

1 + ‖k(x)‖
= 0, (24)

for any given (fixed) c ∈ R
n. This follows by multi-

plying the inequality (22) with 1
1+‖k(x)‖ . In particular

k(λx)

1 + ‖k(λx)‖
︸ ︷︷ ︸

6→0(λ→∞)

, 2

∫ 1

0

kx(λx + θe)e

1 + ‖k(λx)‖
dθ

︸ ︷︷ ︸

→0(λ→∞)

.
(25)

Remark 2. Although the asymptotic polynomial growth
condition is not the least restrictive assumption (see
Remark 1), it is worthwhile to note that the asymptotic
nature of polynomials is easy to verify. In particular,



(14) ensures that the state feedback does not grow
asymptotically faster than a polynomial and (15) en-
sure that the derivative of the state feedback grows
slower than the state feedback. Roughly speaking,
equation (15) avoids asymptotic oscillating behavior
of the state feedback. This polynomial behavior at
infinity may be of special interest for polynomial con-
trol systems, which have gained a lot of attention in
recent years due to the fact that certain numerical
tools, like the sum of squares decomposition, allow
a computer-aided design. Already in (Sepulchre et
al., 1997) and in (Seibert and Suarez, 1990) special at-
tention on polynomial growth conditions in cascaded
systems was paid. Furthermore, also in (Panteley et
al., 1998; Loria, 2004) one can already find such re-
sults for cascades, but not in a setup as presented here.

As an immediate consequence of Theorem 1 is the
following question: When or for which class of control
systems is the growth condition (14) and (15) satis-
fied? A quite interesting question is given in the next
statement. Namely, if of all functions f,G, q,R can be
asymptotically bounded by polynomial functions, are
then the asymptotic polynomial growth rate condition
(14) and (15) of the inverse optimal state feedback
satisfied?

Statement 1. Suppose all assumptions made in Sec-
tion 2 hold. Moreover, suppose u ∈ R and the func-
tions f, q, R,G in (1) and (3) with ‖G(x)‖ ≥ g0 > 0

can be asymptotically bounded by polynomial func-
tions in the sense of (14) and (15). Then the closed-
loop (7) is globally asymptotically stable.

In the following, ideas and discussions to Statement 1
are given which may be helpful for a future proof. In
the case of u ∈ R, denote R(x) = r(x), G(x) = g(x),
‖g(x)‖ ≥ g0 > 0. Then, the HJB equation (4) has the
following form:

Vx(x)f(x) −
1

4r(x)
(Vx(x)g(x))2 + q(x) = 0. (26)

Using the identity aT b = ‖a‖‖b‖cos(a, b) and skip-
ping the arguments, one can write (26) as

‖Vx‖‖f‖cos(Vx, f) (27)

−
1

4r
‖Vx‖

2‖g‖2cos2(Vx, g) + q = 0.

Now, one has to make sure that ‖Vx‖ has polynomial
growth at infinity, in case 1

r(x)Vx(x)g(x) 6→ 0 for
‖x‖ → ∞. In the other case, the optimal feedback
(2) u = k(x) = − 1

2r(x)Vx(x)g(x) would converge
to 0, which implies, of course, polynomial growth
at infinity. Let’s assume that ‖Vx‖ grows faster than
polynomial at infinity, then by dividing (27) through
‖Vx‖, one obtains

‖f‖cos(Vx, f) (28)

−
1

4r
‖Vx‖‖g‖

2cos2(Vx, g) +
q

‖Vx‖
= 0.

Since q

‖Vx‖
goes to 0 for ‖x‖ → ∞, in case the limit

exists, one gets in the limit

‖f‖cos(Vx, f) −
1

4r
‖Vx‖‖g‖

2cos2(Vx, g) = 0. (29)

Moreover, since ‖g‖ ≥ g0 > 0 and since it was
assumed that 1

r
cos(Vx, g) does not converge to 0, i.e.,

1
r
Vxg 6→ 0, ‖Vx‖ cannot grow faster than polynomial

at infinity, because of ‖f‖cos(Vx, f) can be bounded
by a polynomial function. Finally, one could argue
that ‖Vx‖ becomes (exponentially) large whenever
cos(Vx, g) goes to zero. Although V is assumed to
be continuously differentiable, this can indeed happen.
In this case the step from (28) to (29) is not valid in
general, since the limit for ‖x‖ → ∞ may not exist,
due to these “oscillating” behavior. However, V is a
control Lyapunov function and hence cos(Vx, f) < 0

for cos(Vx, g) = 0. Therefore, if cos(Vx, g) = 0,
then ‖Vx‖‖f‖cos(Vx, f) must has polynomial growth
because of cos(Vx, f) < 0, ‖f‖ > 0 and all function
are at least C2. Hence the optimal feedback grows
asymptotically like a polynomial. For the second part,
one has to show that (15) holds. For this, one may
consider (26) along the ray λx for any given fixed
x with ‖x‖ = 1. In other words, replace in (26) the
argument x by λx:

Vx(λx)f(λx) −
(Vx(λx)g(λx))2

4r(λx)
+ q(λx) = 0.(30)

Next differentiate (30) w.r.t. λ:

xT Vxx[f −
1

2r
(Vxg)g] (31)

+xT R(Vx, fx, g, gx, r, rx, qx) = 0,

where R is a (vector-valued) function which contains
all the remaining functions with asymptotic polyno-
mial growth. Notice that fcl = f − 1

2r
(Vxg)g is

the closed loop. By using again the identity aT b =

‖a‖‖b‖cos(a, b), one obtains

‖Vxxfcl‖cos(x, Vxxfcl) (32)

+‖R‖cos(x,R) = 0.

Since ‖fcl‖ is positive definite and of asymptotic poly-
nomial growth and since ‖R‖ is also of asymptotic
polynomial growth, one would expect that ‖Vxxfcl‖

is also of asymptotic polynomial growth in case one
assumes ‖fcl‖ 6→ 0 for ‖x‖ → ∞. Basically, the
problem in equation (31), (32) is similar as in equation
(28), (29). One has to show (or to make sure by certain
assumptions that pathological situations like oscilla-
tion may not appear) that there exists no (smooth)



function with asymptotic exponential growth such that
multiplied with a (smooth) function with asymptotic
polynomial growth results in a (smooth) function with
asymptotic polynomial growth. However, further in-
vestigations are necessary in this direction. Finally, it
should be also noticed that there is a relation between
equation (31) and the Hamiltonian system: ẋ = HT

y ,
ẏ = −HT

x , H = yf − 1
4r

(yg)2 + q. Hence, (31)
is related with the equation VxxHy + Hx = 0 with
Hx = R. From this observe that in case Hx and
VxxHy vanishes, one obtains y = Vx = const since
ẋ = HT

y , ẏ = −HT
x . 2

4. OUTLOOK AND SUMMARY

Future research will focus on following questions.
(a) A proof to Statement 1 under certain additional
conditions, e.g., V is convex, or a characterization
for which class of control systems the growth rate
condition is satisfied. (b) A more thorough study of
the connections to existing results, i.e., how is the
present result related with separation principles based
on (i)ISS and cascades. (c) Generalization of Theorem
1, e.g., by imposing a certain growth rate condition on
q.

Summarizing, in the present paper a new separation
result for nonlinear control systems is established. It
was shown that an inverse optimal state feedback with
certain asymptotic growth rates in conjunction with
an observer leads to globally asymptotically stability,
in case of the state feedback control loop and the
observer are globally asymptotically stable. The estab-
lished separation result is based on following assump-
tions:

(i) control system is affine in the input
(ii) robustness of the inverse optimal state feedback

(iii) polynomial growth rate condition

Hence, the separation result do not use standard as-
sumptions, like (i)ISS stability and high-gain argu-
ments, which are often used in the literature. To the
best knowledge of the authors, there are no results
available which are based on the same assumptions.
Nevertheless, there may exist generically results, e.g.
results based on (i)ISS and cascades, which contains
this setup. However, these results are often hard to
verify and not easy to apply in control practice. Fur-
thermore, although the separation result is quite sim-
ple to establish, the assumption used in the main theo-
rems, i.e., “inverse optimal state feedback + stable ob-
server”, are often satisfied in control practice. There-
fore, a simple separation result was established in this
paper which also justifies why in control practice such
a combination of (inverse) optimal feedback and ob-
server often lead to satisfactory results.
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Constructive Nonlinear Control. Springer Verlag.

Teel, A. and L. Praly (1994). Global stabilizability and
observability imply semi-global stabilizability by
output feedback. Systems and Control Letters
22(4), 313–325.

6. APPENDIX

Hadamard’s Lemma (Petrovski, 1966). Let k : R
n →

R
p be a (twice) continuously differentiable function,

then for any x, e holds:

k(x + e) − k(x) =

[∫ 1

0

kx(x + θe)dθ

]

e (33)


