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Abstract: Mobile robot navigation in unstructured environment is a challenging
task due to the uncertain nature of the real world. Navigating using visual
landmarks could be a mandatory skill together with the ability of building a
representation of the world around the robot. This mapping aptitude should be
implemented as an efficient real-time task, even if a large number of elements have
to be included in the map itself. To this aim, and to help in localising the robot,
a promising technique is given by the Extended Kalman Filter in its interlaced
version. The resulting SLAM algorithm, proposed in this paper, has a reduced
computational cost preserving, at the same time, a good performance. Copyright
c©2005 IFAC
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1. INTRODUCTION

When mobile robots operate in real world envi-
ronments they require both reliable localisation
systems, and a sufficiently precise map of the
working area. Thus, most successful mobile robot
systems include a localisation module together
with an a priori knowledge of the environment
(i.e., a map) in their control architecture. The lo-
calisation module, by means of the map, is able to
provide a reliable estimation of the robot position.

A more challenging problem arises when “both
the map and the robot location are unknown. In
this case, the robot starts in an unknown posi-
tion, in an unknown environment, and tries to
incrementally build a map while using the same
map to compute its pose in the environment”
(Clark S. et al., 2001). This problem is referred

in literature as simultaneous localisation and map
building (SLAM), and several approaches have
been investigated to solve it after the seminal
paper of (Smith R.C. and Cheeseman P., 1986).
The solution of SLAM has been addressed with
approaches based on Bayesian filtering (Guivant
J. and Nebot E., 2001; Clark S. et al., 2001). These
techniques approximate the probability represen-
tation using samples of probability density dis-
tributions (Thrun S. et al., 1998). Although they
are still computationally expensive for real time
applications, they present significant advantages
in solving the data association problem.

In this framework, one of the most appealing ap-
proaches to solving real time SLAM problems uses
the well known predictor-corrector structure of
the Kalman filter: a solution is given by modeling
the environment and the sensors, and assuming



that errors have a Gaussian distribution (Gelb
A.C., 1994). The measures of the proprioceptive
sensory system of the vehicle (e.g., encoders, gy-
ros) are used to compute a raw location estima-
tion, while, the exteroceptive sensors refine this
estimation and update the map.

Drawbacks of such approach are memory require-
ments and computational loads that quadrati-
cally increase with the number of map objects
(beacons). In densely populated environments, the
number of beacons detected will make those needs
to be beyond the power capabilities of computer
resources.

In this paper, we propose a Kalman based solution
to SLAM, suitable for real-time implementations.
Indeed, our algorithm has a memory occupancy
and a computational load linearly proportional to
the number of beacons detected by the sensory
system. In particular, a vision system is interfaced
with a mobile robot allowing the use of ceiling
lamps as natural landmarks. A brief description
of the image processing algorithm will be given
in section 2. In section 3 we review the inter-
laced Kalman filter introduced in (Glielmo L. et
al., 1999), while in section 4 we describe its ap-
plication to the SLAM case. Its reduced compu-
tational cost is evaluated in section 5 and some
experiments, whose results are shown in section
6, conclude the paper.

2. VISION SYSTEM

As stated above, the vision system presented in
this work should be able to recognise artificial
sources of light during the navigation of a mobile
robot in an office like environment.

The camera is mounted focusing the ceiling such
that the distance between the image plane and the
landmarks along the focal axis is fixed and known.
This reduce the overall complexity of features
extraction, because also the size of the landmarks
is fixed.

The image processing algorithm developed follows
the fundamental steps of image analysis: prepro-
cessing, segmentation, feature extraction.

- Preprocessing
Assuming that the beacon have a frame repre-
sentation with large luminance values, a thresh-
old is applied to obtain a binary image. The
key function of the threshold operation is to
improve the image in way that increases chances
for the success of other processes: indeed, in this
step small reflection are partially removed cause
their areas normally decrease.

- Segmentation
After thresholding, the image is partitioned into

its constituents objects, performing a graph
search of all connected components (blobs). The
segmentation step usually retrieves more than
one blob, and, sometimes reflections can pro-
duce small connected components that can be
discriminated evaluating their area.

- Feature extraction
After segmentation the position of the lamps
in the image plane is obtained applying the
well known formulas for calculating the centre
of mass. In order to improve the quality of
this shape, a binary morphological operator
is applied on the connected components. An
opening operation with a circular structuring
element is performed to smooth the contour end
eliminate protrusions.

3. IEKF FILTER
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Fig. 1. Interlaced Extended Kalman Filter

The Interlaced Extended Kalman Filter (IEKF)
has been proposed in (Glielmo L. et al., 1999)
to reduce computational load of the estimation
process for a class of nonlinear system. The fun-
damental idea of the IEKF derived from the multi-
players dynamic game theory, where the solution
of the game is such that each player chooses its
strategy as optimal response to the strategy cho-
sen by the other players. In the context of esti-
mation the players are the estimation algorithm,
the strategy is the estimate, the object function is
a measure of the covariance estimation error. In
particular IEKF consists of m parallel implemen-
tation of Kalman Filters (KF). Each KF works
independently by the others and is designed to es-
timate a subset of the state variables, considering
the remaining parts as deterministic time varying
parameters. The error introduced is partially al-
leviated increasing the noise covariance matrices.

For sake of simplicity, let us consider a system
whose state vector can be partitioned into just
two subsets, can be put in the form
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where the state vector x ∈ Rn has been parti-
tioned into x(1) ∈ Rn1 and x(2) ∈ Rn2 (with
n = n1 +n2), f (i) are differentiable functions, and
ξ
(i)
k ∈ Rni , i = 1, 2 are zero-mean uncorrelated

white process noise vectors characterized by the
covariance matrices Q

(i)
k , i = 1, 2 and uk is the

input vector.

Further, the system is assumed to have an out-
put equation that can be put into the following
equivalent form

yk = C(1)(x(2)
k )x(1)

k + D(1)(x(2)
k ) + ψk (2a)

yk = C(2)(x(1)
k )x(2)

k + D(2)(x(1)
k ) + ψk (2b)

where ψk ∈ Rm, are zero-mean uncorrelated
white measurement noise vector characterized by
the covariance matrices Rk.

Under this hypothesis, the first filter of the IEKF
computes the estimate x̂
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the other filter. Notice that, after replacing x
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can be considered as a linear time varying system
dependent on the known input f (1)(x̂(2)

k|k−1, uk).
Similar considerations holds for the second sub-
system.

Each KF is characterised by the following equa-
tions (for the first filter i = 1 and j = 2, while for
the second i = 2 and j = 1):
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where Jf,i
x,j is the Jacobian of f (i) w.r.t. x(j),

P
(i)
k|k−1 is the covariance matrix of the estimation

error variable e
(i)
k|k−1 := x
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(i)
k|k−1 for i = 1, 2.

From (3a) and (3c) one can notice that the process
and measurement noise covariance matrices Q

(i)
k

and Rk are suitable increased by addition of posi-
tive semi definite quantities that take into account

the error introduced by the decoupling operation.
Indeed Q̃
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process and measurement covariance of the “mod-
ified” error
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The proposed formulation of IEKF assumes that
state transition mapping and the observation
mapping depend linearly and affinely on their
argument. If one removes these assumptions, the
algorithm can be still applied by linearising each
part of the system in the neighbourhood of the
estimations obtained by the other filters at the
previous step.

4. IEKF SLAM FILTER

In this paper we use IEKF filter to solve the
SLAM problem. In this framework we assume that
all uncertainty sources have unimodal Gaussian
distribution and provide a model for the robot,
the beacon positions, and the sensors. The mobile
platform considered is a robot with the kinematics
of an unicycle. The robot is equipped with en-
coders and gyro, as proprioceptive sensors, while
uses the vision system presented above as extero-
ceptive sensor. The measurement provided by the
exteroceptive sensory system are expressed in the
robot coordinates and represent the position of
the beacons in the viewing windows of the web
cam. Under the SLAM framework, the filter is
able to localise the robot and concurrently build a
simple geometric map (a list of beacon positions).
During the navigation task, the system detects
new features when exploring new areas. Once
those feature become reliable, they are included
into the map.
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Fig. 2. Reference frames used in SLAM filter

4.1 Complete system model

The state of the whole system at the k-th sampling
interval is composed by the configuration of the



robot together with the positions of all beacons
w.r.t. a global reference frame (see Fig. 2):

xk = (xr
k

T , xb
k

T
)T . (6)

Define the robot state vector as

xr
k = (px

k, py
k, φk, bk)T (7)

where b is the gyro bias, and define the inputs for
the robot model as

uk = (δsk, ωk)T (8)

where δsk is the vehicle displacement and ωk its
angular velocity during the k-th sampling interval.

The robot dynamic is modelled using the equation
of the unicycle model:

xr
k = f(xr

k−1, uk) = (9)

=




1 0 0 0
0 1 0 0
0 0 1 −δtk
0 0 0 1


 xr

k−1 +




cosφ̃k 0
sinφ̃k 0

0 1
0 0


 uk

where φ̃k = φk−1 + (ωk − bk−1δtk)/2 is the
average robot orientation during the sampling
time interval δtk.

The beacon state vector is defined as

xb
k = [p1

k, ..., pN
k ]T (10)

where pi
k = (xi

k, yi
k) is the location of the i-th

beacon in the global reference frame. The state
transition equation for the beacons can be written
as

xb
k = xb

k−1 (11)

since beacons are assumed to be static. Notice
that the size of xb

k is dynamically increased any
time a new beacon appears in the camera image.

The observation equation describes the relation
between robot configuration and position of bea-
cons in the viewing windows of the web cam
(referred as active beacon in from now on). The
observation vector

zk = h(xk) (12)

consists of sub vectors zi
k, i = 1, ...,M , where M

is the number of active beacons and
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being Rφ
k the rotation matrix between the robot

reference frame and the global frame reference (see
Fig. 2)

Rφ
k =

[
cosφk sinφk

−sinφk cosφk
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(14)

Due to the structure of the system model, IEKF
can be adopted partitioning the system into 2+M
subsystem:

• robot position subsystem estimating pr
k =

(px
k, py

k)
• robot orientation subsystem estimating θk =

(φk, bk)
• M beacon position subsystems each one esti-

mating a beacon position pi
k = (xi

k, yi
k)

4.2 Robot position subsystem

The robot dynamics can be written in the form

pr
k = pr
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k−1 (15)

where ξr
k ∈ R2 is a zero-mean white noise vector

with covariance matrix Qr
k and

fr (θk−1, uk, δtk) =
[

cosφ̃k 0
sinφ̃k 0

]
uk (16)

The observation vector is composed by M sub
vectors
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4.3 Robot orientation subsystem

The orientation dynamic φ and the gyro bias b
may be formulated as

θk = Aθθk−1 + fθ (uk) + ξθ
k−1 (19)

where ξθ
k ∈ R2 is a zero-mean white noise vector

with covariance matrix Qθ
k and
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The output equation consists of M sub vector
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where hθ(θ, pr, p(i)) is a nonlinear mapping
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4.4 Beacon position subsystem

The state transition model of each beacon is

p
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where ξ
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with covariance matrix Q
(i)
k

The associated output equations result in
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In order to reduce the number of parallel subsys-
tems, we decide to pack all the M beacon filters
in the active beacon subsystem. At k-th sampling
time the active beacon are retrieved and each sub
vectors is used to dynamically compose the state
vector of such filter. For example if the beacons i
and j are in the viewing windows of the web cam,
the active beacon subsystem become:

[
p
(i)
k

p
(j)
k

]
=

[
p
(i)
k−1

p
(j)
k−1

]
+

[
ξ
(i)
k−1

ξ
(j)
k−1

]
(26)

[
z
(i)
k

z
(j)
k

]
=
[
Rφ

k 0
0 Rφ

k

][
p
(i)
k

p
(j)
k

]
−

[
Rφ

k 0
0 Rφ

k

][
pr

k

pr
k

]
(27)

5. COMPUTATIONAL COST

It is well known that classical SLAM algorithms
have computational cost and memory requirement
proportional to ∼ O

(
N2

)
, being N the number

of the states used to represent all the beacons and
the vehicle position.

In order to reduce the computational load in
(Guivant J. and Nebot E., 2001) the authors pro-
pose CSLAM. This algorithm segments the map
into a set of fixed disjointed areas and solves the
SLAM problem only with respect to the beacons
present inside one area (i.e. where there is the
vehicle). Full update of the filter is performed only
when the vehicle move away from the area. Fur-
ther, to reduce memory occupation, in (Guivant
J. and Nebot E., 2002),the authors introduce a
de- coupling procedure in CSLAM nullifying the
correlation terms related with beacons belonging
to different constellations. In this way, memory
and computational requirements of the algorithm
are proportional to ∼ O (N ·Nb), where Nb is the
number of beacons present inside to each area.

As noted before, our algorithm stores separately
information related to each filter. Then it is im-

mediate to recognise that the memory occupancy
is proportional to

MR ∼ 4 + 4 + 4 ·N

that can be approximated as MR ∼ O (N).

On the other side, the computational load of the
filters for position and orientation of the vehi-
cle is proportional to ∼ O

(
4 + 4 + M2

)
, where

M is the number of beacons present inside the
camera image. However, notice that almost all
the equations of the position filter, excepted the
ones devoted to calculate the augmented process
and measurement covariance matrices R̃r

k and Q̃r
k,

have a cost proportional to a dimension four (the
same also for the orientation filter neglecting the
calculations requested to compute R̃θ

k and Q̃θ
k).

During the estimation phase, the filters associ-
ated with the beacons present inside the camera
image are assembled into a single object. The
computational load of this filter is proportional
to ∼ O

(
4 + 4 + M2

)
, but if we neglect the calcu-

lation requested to compute R̃b
k, it is proportional

to ∼ O
(
M2

)
.

In any case, because M ¿ N (but also M < Nb),
we archive a considerable reduction of computa-
tion load.

6. EXPERIMENTAL RESULTS

Experimental trials have been carried out using
a robotised wheelchair prototype built at the
robotics lab of the University of “Roma Tre”
and a Philips Vesta Pro Scan. The vehicle has
two driving wheels equipped with low resolution
incremental encoders (6.4 pulses/mm of the wheel
movement).

The proprioceptive sensory system is completed
by a piezoelectric gyro (MuRata), that measures
rotation velocity. The gyro has a good accuracy
(3%) but is affected by temperature depending
bias.
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Fig. 3. Landmark estimation errors

The software implementation is based on two
notebooks connected over an Ethernet link. The
first laptop installed on the wheelchair runs the
control software. A data acquisition card (DAQ-
Pad 1200 by National Instruments) interfaces the



sensory and driving systems under a LabVIEW
application that includes some C routines for the
time critical tasks of the filter implementation.
The second laptop, is devoted to process im-
ages from the vision system including a web cam
mounted on the robot and focusing the ceiling.
The distance from the lights is about 2.50 m and
each pixel is thereafter about 5mm large at the
CIF resolution (352× 288).

The results our experiment are reported in Figs.
3 and 4. The robot describes a double 8-path in
an office-like environment and the camera is able
to view only few beacons (zero to three) for each
frame. The estimated beacons positions are shown
in Fig. 4 as red stars and the distance from their
exact position is reported in Fig. 3. The statistical
values reported in table 6 show that the quality of
the estimate is almost the same for each beacon
due to the decoupled nature of the filter.

The localisation results are shown in Fig. 4 where
the odometric path, as estimated on the basis of
encoders and gyro data, is compared with the
filter output.

Table 1. Map error (in cm)

Mean Standard Min Max
value deviation error error
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Fig. 4. Corrected path (blue), odometry (ma-
genta), and landmark estimated position (∗)
vs. real (◦)

Finally, we remark that, using the same experi-
mental test bed, the execution time of the pro-
posed filter is 60% less than the algorithm re-
ported in (Panzieri S. et al., 2003).

7. CONCLUSIONS

This paper describes an algorithm based on a
modified version of EKF for SLAM problems.
Specifically, the peculiar structure of the problem
at hand allows the use of the Interlaced version
(IEKF). This algorithm represents a good trade-
off between accuracy and computational load. In
particular, it has been shown that computational
load and memory capacity requested by IEKF
increase at least linearly with the number of
beacons (while clasical approches have a quadratic
dependency).

Further work will be devoted to test IEKF in
other configurations (e.g., outdoor), with different
testbeds and in the presence of a multitude of
mobile robots.
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