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1. PROBLEM FORMULATION

Consider a state-space equation

ẋ(t) = Ax(t)+Bu(t) (1)

with a boundary condition

Ωx(0)+ϒx(1) = 0 (2)

satisfying that

Ξ := Ω+ϒeA (3)

is nonsingular, where A ∈ R
n×n, B ∈ R

n×m, Ω ∈ R
n×n,

and ϒ ∈ R
n×n. The regularity of Ξ is required for the

well-posedness of (1) and (2). In fact (1) and (2) has
a unique solution x = 0 for u = 0 if and only if Ξ is
nonsingular (Mirkin and Palmor, 1999).

The following is the first problem we study in this
paper:

Problem 1. Let a real symmetric matrix Π = Π∗ ∈
R

(n+m)×(n+m) be given. Determine whether
∫ 1

0

[

x(t)
u(t)

]∗

Π
[

x(t)
u(t)

]

dt < 0 (4)

holds for all u ∈ L2[0, 1], u 6= 0 or not.

We remark that (4) is a finite-horizon IQC (integral
quadratic constraint), and Problem 1 is motivated by
the important role of (infinite-horizon) IQCs in recent
robust control theory (Megretski and Rantzer, 1997;
Rantzer and Megretski, 1997). The norm computation
of finite-horizon systems, which is a special case of
Problem 1, is required in H∞ analysis and synthesis
of delay systems (e.g. (Zhou and Khargonekar, 1987))
and sampled-data systems (e.g. (Chen and Francis,
1995)), and in the computation of the spatio-temporal
frequency response of a class of spatially invariant
systems (e.g. (Jovanović and Bamieh, 2003)). Hence
it is expected that Problem 1 is required to be solved
in order to develop a robust control theory based on
IQCs for the systems mentioned above.

There are several analysis tools for infinite-horizon
IQCs including the Kalman-Yakubovich-Popov lemma
(Rantzer, 1996). This paper indends to provide a coun-
terpart for finite-horizon IQCs based on the approach
in (Dullerud, 1999; Fujioka, 2004), where norm com-
putation of finite horizon systems is considered.

We also remark that a special case (Ω = −ϒ) of
Problem 1 arises in robustness analysis of periodic
systems (Kao et al., 2001; Jönsson et al., 2003).

As in the infinite-horizon case, we also consider the
following parameter search problem, which will be
important for reduction of conservativeness of robust-
ness analysis:



Problem 2. Let real symmetric matrices Π̂k = Π̂∗
k ∈

R
(n+m)×(n+m) (k = 0, 1, . . . , q) and Λ ⊆ R

q
+ be given,

where R
q
+ denotes the non-negative orthant of R

q,
Find a λ ∈ Λ such that

∫ 1

0

[

x(t)
u(t)

]∗

Π̂(λ )

[

x(t)
u(t)

]

dt < 0 (5)

holds for all u ∈ L2[0, 1], u 6= 0 if exists, where

Π̂(λ ) := Π̂0 +
q

∑
k=1

λkΠ̂k. (6)

2. QUADRATIC PERFORMANCE TEST

In this section, we provide a solution to Problem 1 as
a condition on a matrix.

We introduce a partition of Π:

Π = Π∗ =

[

Π1 Π3
Π∗

3 Π2

]

(7)

where Π1 ∈ R
n×n, Π2 ∈ R

m×m, and Π3 ∈ R
n×m. Then

we have a condition so that the answer to Problem 1 is
negative:

Proposition 3. There exists a u ∈ L2[0, 1], u 6= 0
which violates (4) if Π2 is not strictly negative-
definite.

The proof is found in Appendix A

Hence in the sequel we consider the case of Π2 < 0
where the following Hamiltonian matrix H is well-
defined:

H :=
[

−A∗ −Π1
0 A

]

−

[

−Π3
B

]

Π−1
2

[

B
Π3

]∗

.

The following theorem provides a solution to Prob-
lem 1:

Theorem 4. Suppose that Π2 < 0. The following two
statements are equivalent:

(i) (4) holds for all u ∈ L2[0, 1], u 6= 0.
(ii) Φ < 0 where the matrix Φ is defined as follows:

Step 1: Fix θ ∈ (−π , π ] such that

ejθ 6∈ eig(eA), ejθ 6∈ eig(eH).

W∞ := 1
2

[ I 0
0
(

ejθ I− eA
)−1

]∗
[

0 −(ejθ I + eA)

−(ejθ I + eA)∗ 2Q

]

[ I 0
0
(

ejθ I− eA
)−1

]

−
1
2J
(

ejθ I− eH
)−1(

ejθ I + eH
)

.

W̄i :=
([

Π1 (jωiI −A)∗

jωiI −A 0

]

+

[

−Π3
B

]

Π−1
2

[

−Π3
B

]∗)−1
−

[

I 0
0 (jωiI−A)−1

]∗[ 0 I
I −Π1

][

I 0
0 (jωiI −A)−1

]

.

Step 2: Define M by

M := R∗

[

Q (ejθ I− eA)∗

ejθ I− eA 0

]

R, (8)

where

Q :=
∫ 1

0
eA∗t Π1 eAt dt,

R :=
[

Ξ−1(Ωe−jθ +ϒ) 0
0 I

]

.

Define also W∞ as in the bottom of this page where

J :=
[

0 −In
In 0

]

.

Step 3: Case 1) eig(H)∩ jR 6= /0: In this case

η := max{|ω | : ω ∈ eig(H)∩ jR} ≥ 0

is well-defined. Fix N as a nonnegative integer satis-
fying

|ωN+1| > η , |ωN+2| > η

where {ωi}∞
i=0 is defined by

ωi := 2πvi +θ , {vi}
∞
i=0 := {0, 1,−1, 2, −2, . . .}.

Then Φ is defined by

Φ :=
[

K 0
0 −I

]

+

[

L∗

V ∗
N+1

]

M
[

L VN+1
]

where

K :=







P∗
0 ΠP0 0

. . .
0 P∗

NΠPN






, L :=

[

S0 · · · SN
]

,

Pi :=
[

(jωiI −A)−1B
I

]

, (9)

Si :=
[

−(jωiI −A)−1B
(jωiI −A)−∗

[

Π1 Π3
]

Pi

]

. (10)

VN+1 is a column full rank matrix defined by a factor-
ization:

VN+1V ∗
N+1 = W∞ −

N
∑
i=0

W̄i

where W̄i is given at the bottom of this page.



Case 2) eig(H)∩ jR = /0: In this case Φ is defined by

Φ := V ∗
0 MV0 − I, V0V ∗

0 = W∞.

where V0 has its column full rank.

The proof is found in Appendix B.

3. SPECIAL CASES

Notice formally that M in Theorem 4 is equal to 0 if

Ωe−jθ +ϒ = 0. (11)

Hence Theorem 4 is further simplified when (11)
holds. Since both Ω and ϒ are real matrices, (11)
implies either (a) Ω = −ϒ and θ = 0, or (b) Ω = ϒ
and θ = π .

In fact we can take θ = 0 when Ω = −ϒ, and θ = π
when Ω = ϒ: In the proof of Theorem 4, M is con-
structed for θ satisfying ejθ 6∈ eig(eA). In addition,
once we find M = 0, we do not need additional con-
ditions on θ like ejθ 6∈ eig(eH). On the other hand,
the regularity of Ξ requires that 1 6∈ eig(eA) when
Ω =−ϒ, and −1 6∈ eig(eA) when Ω = ϒ, respectively.

In this section we will show reduced versions of The-
orem 4 for the cases of Ω = −ϒ and Ω = ϒ. We will
also point out that both cases are related to periodic
solutions of infinite horizon systems.

3.1 Case of Ω = −ϒ

Noting the regularity of Ξ, the boundary condition in
this case is

x(0) = x(1).

Then we can study periodic solutions (with period
1) of infinite horizon systems governed by (1). The
reduced version of Theorem 4 for this case is given as
follows:

Corollary 5. Suppose that Π2 < 0 and Ω =−ϒ. Then
the following two statements are equivalent:

(i) (4) holds for all u ∈ L2[0, 1], u 6= 0.
(ii) eig(H)∩ jR = /0, otherwise P∗

i ΠPi < 0 for all i ∈
{0, 1, . . . , N} where N is defined as in Theorem 4
for θ = 0.

This case is closely related to (Kao et al., 2001;
Jönsson et al., 2003). Moreover the approach in this
paper is also closely related to the Fourier domain
analysis in (Jönsson et al., 2003), where they derive
a finite dimensional condition for time-varying A, B,
and Π under a certain assumption.

3.2 Case of Ω = ϒ

In this case, the boundary condition is

x(0) = −x(1),

which is related to periodic signals f with period 2
satisfying

f (t) = − f (t +1), f (t) = f (t +2).

The reduced version of Theorem 4 for this case is
given as follows:

Corollary 6. Suppose that Π2 < 0 and Ω = ϒ. Then
the following two statements are equivalent:

(i) (4) holds for all u ∈ L2[0, 1], u 6= 0.
(ii) eig(H)∩ jR = /0, otherwise P∗

i ΠPi < 0 for all i ∈
{0, 1, . . . , N} where N is defined as in Theorem 4
for θ = π .

4. RELATED FEASIBILITY PROBLEM

In this section we consider Problem 2. We here de-
rive a cutting hyperplane generated from an infeasible
parameter, with which one can easily construct a con-
crete cutting plane algorithm to solve Problem 2, as in
(Kao et al., 2001; Jönsson et al., 2003).

Let us introduce a partition of Π̂k (k = 0, 1, . . . , q):

Π̂k = Π̂∗
k =

[

Π̂k1 Π̂k3
Π̂∗

k3 Π̂k2

]

where Π̂k1 ∈R
n×n, Π̂k2 ∈R

m×m, and Π̂k3 ∈R
n×m. The

following theorem provides a cutting hyperplane:

Theorem 7. Given λ̌ ∈ Λ such that

• (5) is violated by λ = λ̌ and some u ∈ L2[0, 1],
u 6= 0, and

• Π2 < 0 where Π2 ∈ R
m×m is given in (7) for Π

defined by

Π = Π̂(λ̌ ).

The following two statements are equivalent:

(i) There exists a λ ∈ Λ such that (5) holds for all
u ∈ L2[0, 1], u 6= 0.

(ii) There exists a λ ∈ Λ∩{λ : α +β∗λ ≤ 0} such
that (5) holds for all u ∈ L2[0, 1], u 6= 0, where
α ∈ R and β ∈ R

q are defined as follows:

Step 1: Fix θ ∈ (−π , π ] as in Theorem 4.

Step 2: Define M̂k by

M̂k := R∗

[

Q̂k (e jθ I − eA)∗

e jθ I − eA 0

]

R

where

Q̂k :=
∫ 1

0
eA∗t Π̂k1eAt dt.



Define also f̂k∞ and Γ̂k∞ by

f̂k∞ := f́k∞ + f̀k∞ + f̀
∗
k∞ + f̆k∞,

Γ̂k∞ := W∞ + f́k∞ + f̀k∞

respectively, where W∞ is defined in Theorem 4 and

f́k∞ :=
[

0n 0
0 −(ejθ I− eA)−∗(Q̂k −Q)(ejθ I− eA)−1

]

,

f̀k∞ := 1
2

[

0n,2n

C̀
(

(ejθ I − eÀk)−1(ejθ I + eÀk)
)

B̀

]

,

f̆k∞ := 1
2C̆
(

(ejθ I − eĂk)−1(ejθ I + eĂk)
)

B̆,

[

Àk B̀
C̀ ∗

]

:=





−A∗ Fk 0
0 H I2n
In 0



 ,

[

Ăk B̆
C̆ ∗

]

:=





−H∗ E∗(Π̂−Π)E 0
0 H I2n

−I2n 0



 ,

E :=
[

0 In
Π−1

2 B∗ Π−1
2 Π∗

3

]

,

Fk :=
[

Π̂k1 −Π1 Π̂k3 −Π3
]

E.

Step 3: Case 1) eig(H)∩ jR 6= /0: Define Φ̂k by

Φ̂k :=
[

K̂k 0
0 fk(N+1)

]

+

[

L̂∗
k

Γ∗
k(N+1)

]

M̂k
[

L̂k Γk(N+1)

]

where

K̂k :=







P∗
0 Π̂kP0 0

. . .
0 P∗

NΠ̂kPN






,

L̂k :=
[

Ŝk0 · · · ŜkN
]

,

Ŝki :=
[

−(jωiI−A)−1B
(jωiI −A)−∗

[

Π̂k1 Π̂k3
]

Pi

]

,

fk(N+1) := V †
N+1

(

f̂k∞ −
N
∑
i=0

f̄ki

)

(V ∗
N+1)

† − I,

Γk(N+1) :=
(

Γ̂k∞ −
N
∑
i=0

Γ̄ki

)

(V ∗
N+1)

†

Pi, ωi, N, and VN+1 are defined in Theorem 4, and

f̄ki := f́ki + f̀ki + f̀
∗
ki + f̆ki,

Γ̄ki := W̄i + f́ki + f̀ki,

f́ki :=
[

0n 0
0 ( jωiI−A)−∗(Π̂k1 −Π1)( jωiI −A)−1

]

,

f̀ki :=
[

0n,2n
−( jωiI −A)−∗Fk( jωiI−H)−1

]

.

f̆ki := (jωiI −H)−∗E∗(Π̂−Π)E(jωiI−H)−1.

Case 2) eig(H)∩ jR = /0: Define Φ̂k by

Φ̂k := fk∞ − I +Γ∗
k∞M̂kΓk∞,

fk∞ := V †
0 f̂k∞(V ∗

0 )†, Γk∞ := Γ̂∞(V ∗
0 )†.

where V0 is defined in Theorem 4.

Step 4: α and β are given by

α := p∗(Φ̂0 −Φ)p, βk := p∗Φ̂k p

where Φ is defined in Theorem 4, and p is a vector
satisfying

p∗Φp ≥ 0.

The proof is omitted for the paper brevity.
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Appendix A. PROOF OF PROPOSITION 3

Define an operator G on L2[0, 1] by

G : u 7→

[

x
u

]

where x is governed by (1) and (2). Consider the uni-
tary operator Ψ: L2[0, 1] → `2 mapping f 7→ {ϕi}∞

i=0
defined by

ϕi :=
∫ 1

0
e−jωit f (t) dt

which is a key tool in (Dullerud, 1999). Identifying
the matrix Π and the corresponding multiplication
operator on L2[0, 1], we have the following lemma
(Fujioka, 2004):

Lemma 8. Assume that ejθ 6∈ eig(eA). The (k, `)-th
block of the matrix expression of ΨG∗ΠGΨ∗ is given
by

δk`P∗
k ΠP̀ +S∗kMS`.

where Pk, Si and M are defined in (9), (10), and (8),
respectively.

The proof completes by noting that

lim
i→∞

(P∗
i ΠPi +S∗i MSi) = Π2.



Appendix B. PROOF OF THEOREM 4

By using G and Ψ defined in Appendix A, the purpose
of Problem 1 is to check whether

G∗ΠG < 0

holds or not.

Suppose that we have a unitary operator U : L2[0, 1]→
R

n ⊕X for a Hilbert space X such that UG∗ΠGU∗ is
expressed as the sum of a block-diagonal and a finite
rank operators:

[

K0 0
0 K

]

+

[

L∗
0

L
∗

]

M0
[

L0 L
]

where K0: R
ñ → R

ñ, K : X → X , M0: R
m̃ → R

m̃,
L0: R

ñ → R
m̃, L : X → R

m̃, and furthermore K < 0
holds. Then G∗ΠG < 0 is equivalent to

[

K0 0
0 −I

]

+

[

L∗
0

V
∗

]

M0

[

L0
V

]

< 0

where V := L (−K )−
1
2 . This turns to

I−
[

I 0
0 V

∗

]

Θ
[

I 0
0 V

]

> 0,

Θ :=
[

I +K0 0
0 0

]

+

[

L∗
0

I

]

M0
[

L0 I
]

.

We then have an equivalent condition:

ρ
(

Θ
[

I 0
0 W̃

])

< 1 (B.1)

where W̃ := V V ∗ = L (−K )−1L ∗.

(B.1) is a finite dimensional condition since W̃ : R
m̃ →

R
m̃. With a (matrix) factorization of W̃ = VV ∗, (B.1)

turns to

I−
([

I +K0 0
0 0

]

+

[

L∗
0

V ∗

]

M0
[

L0 V
]

)

> 0,

and hence
[

K0 0
0 −I

]

+

[

L∗
0

V ∗

]

M0
[

L0 V
]

< 0.

The rest of the proof is a derivation of concrete for-
mulas for K0, L0, M0 and V , which is similar to that in
(Fujioka, 2004), so it is omitted.

Appendix C. PROOF OF THEOREM 7

Let (5) be violated by u = u0 when λ = λ̌ . Then α and
β are given by

α = σΠ̂0
(u0)−σΠ(u0), βk = σΠ̂k

(u0)

since (5) is affine in λ and

σΠ̂0
(u0)+β∗λ = σΠ(u0) ≥ 0

where σΠ: L2[0, 1] → R is defined by

σΠ(u) :=
∫ 1

0

[

x(t)
u(t)

]∗

Π
[

x(t)
u(t)

]

dt

and x is determined by (1) and (2). Hence our task
here is to characterize u0 and to derive formulas for
σΠ̂k

(u0) and σΠ(u0).

With symbols used in Appendix B, we have

σΠ

(

Ψ−1
[

I 0
0 C

]

p
)

= p∗Φp

for any compatible vector p by using the following
facts:

−I = C
∗
K C , V = L C

where

C := −K
−1

L
∗(V ∗)†.

Hence we can characterize u0 by

u0 = Ψ−1
[

I 0
0 C

]

p

by taking p as a vector satisfying p∗Φp ≥ 0. Note that
such a vector p exits due to Theorem 4.

We have already seen that σΠ(u0) is given by p∗Φp.
Hence we derive a computational formula for σΠ̂k

(u0)
in the sequel. For the purpose we compute

f̃k := L K
−1 ˆKkK

−1
L

∗

and

Γ̃k := −L̂kK
−1

L
∗

since

σΠ̂k

(

Ψ−1
[

I 0
0 C

]

p
)

= p∗
([

K̂k 0
0 V †

f̃k(V ∗)†

]

+

[

L̂∗
k

V †Γ̃∗
k

]

M̂k

[

L̂k
Γ̃k(V ∗)†

])

p

where ˆKk and L̂k are respectively defined similarly to
K and L but replacing Π by Π̂k.

We get

f̃k =
∞

∑
i=i0

Si(P∗
i ΠPi)

−1(P∗
i Π̂kPi)(P∗

i ΠPi)
−1S∗i ,

Γ̃k = −
∞

∑
i=i0

Ŝki(P∗
i ΠPi)

−1S∗i .

where i0 is determined as in Appendix B.



We compute f̃k first. It is readily to see that

f̃k =
∞

∑
i=i0

Si(P∗
i ΠPi)

−1(P∗
i (Π̂k −Π)Pi)(P∗

i ΠPi)
−1S∗i

−W̃ .

Noting that

(P∗
i ΠPi)

−1S∗i
=
(

−Π−1
2 C̃(jωiI−H)−1B̃Π−1

2 +Π−1
2
)

C̃(jωiI − Ã)−1

= Π−1
2 C̃

(

−(jωiI−H)−1B̃Π−1
2 C̃ + I

)

(jωiI −A)−1

= Π−1
2 C̃(jωiI −H)−1(jωiI−A)(jωiI −A)−1

= Π−1
2 C̃(jωiI −H)−1,

we have

Pi(P∗
i ΠPi)

−1S∗i

=

[

(jωiI−A)−1B
I

]

Π−1
2 C̃(jωiI−H)−1

=

[

In 0
0 Π−1

2 C̃

](

jωiI −
[

A BΠ−1
2 C̃

0 H

])−1[ 0
I2n

]

=

[

In
[

0 In
]

0 Π−1
2 C̃

](

jωiI −
[

A 0
0 H

])−1[ [ 0 −In
]

I2n

]

=

[

0 −(jωiI−A)−1

0 0

]

+E(jωiI−H)−1. (C.1)

Substituting (C.1) we get

Si(P∗
i ΠPi)

−1(P∗
i (Π̂k −Π)Pi)(P∗

i ΠPi)
−1S∗i = Ω̄ki

and hence

Ω̃k =
∞

∑
i=0

Ω̄ki −
i0−1

∑
i=0

Ω̄ki −W̃

We also get
∞

∑
i=0

Ώki = Ώk∞,
∞

∑
i=0

Ὼki = Ὼk∞,
∞

∑
i=0

Ω̆ki = Ω̆k∞.

Consequently we have
∞

∑
i=0

f̄ki = f̂k∞.

Next we move to computation of Γ̃k: We have

Ŝki = Si +

[

0
(jωiI−A)−∗

[

Π̂k1 −Π1 Π̂k3 −Π3
]

Pi

]

.

Noting (C.1), we have

[

0
(jωiI−A)−∗

[

Π̂k1 −Π1 Π̂k3 −Π3
]

Pi

]

× (P∗
i ΠPi)

−1S∗i
=−f́ki − f̀ki.

Hence we get

Γ̃k =
∞

∑
i=i0

Γ̄ki

and

Γ̂k∞ =
∞

∑
i=0

Γ̄ki.

This completes the proof of Theorem 7.
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