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Abstract: This paper proposes two types of application of the method given
in the paper (PART I). The first is suppression of disturbance with unknown
dynamics in control systems. Assuming that a disturbance enters into a system
independently of the control input signals, the method makes it possible to identify
a denominator polynomial matrix of the disturbance dynamics, and then to design
an H∞ controller suppressing the effect of the disturbance. Numerical simulation is
carried out to verify the effectiveness of this approach. The second is fault detection
of mechanical systems subject to vibration from the environment. The vibration
source is assumed to be unmeasurable, and yet the method achieves detection
of a parameter change of the system due to fault. To test the effectiveness of
the second approach, experiment with a flexible structure has been carried out.
Copyright c©2005 IFAC.
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1. INTRODUCTION

In our companion paper (Sugimoto and Nitta,
2005), which is presented also in this conference,
we have seen that polynomial matrix fraction is ef-
fective for independent component analysis (ICA)
for a class of dynamical systems, and thereby
derived a method for blind identification; i.e.,
system identification where input signals are not
available. The objective of the present paper is to
provide two types of application of the method
proposed in (Sugimoto and Nitta, 2005).

1 This work is supported in part by Scientific Research
Grant-in-Aid 15560379 from the Japan Society for the
Promotion of Science.

In system identification, it is usually natural to ex-
pect that the input signal is measurable, because
our main objective is to design the control input
after we have identified the system parameter
(Ljung, 1987). This is, however, not always the
case in practice. For example, if the input is sub-
ject to nonlinearity, then we are uncertain whether
or not we are applying a correct (designed) signal
to the input. In this paper, we propose yet a
couple of other applications where an input signal
is unknown and we need to estimate the dynamics
corresponding to this unknown input.

Firstly, we consider a dynamical system under the
influence of disturbances which we can neither
control nor measure directly. In order to suppress
their effect, we may apply a feedback designed



by, say H∞ methods (Zhou et al., 1996). If,
however, we obtain further information as to how
the disturbance affects the system; i.e., if we
identify its transfer property, then we can design
more effective feedback than the one designed
merely for the worst-case disturbance. This is
achievable by means of our polynomial matrix
ICA method 2 .

Our second application is fault detection of a me-
chanical vibration system. Again we suppose that
the system is subject to unknown disturbance, but
this time we try to find a parameter change due
to fault, only from the output.

This problem is solved by two kinds of methods
in this paper. We first apply the ICA algorithm
in (Sugimoto and Nitta, 2005) directly. If we
can perform identification in real time, this is
enough. Real time ICA for dynamical systems is,
however, difficult in reality, since it requires a lot
of sample data and hence much computational
time. To overcome this difficulty, we next propose
to combine our polynomial matrix ICA method
with conventional FastICA (Hyvärinen and Oja,
1997) and achieve “semi” real-time processing 3 .

2. DISTURBANCE SUPPRESSION

2.1 Motivation

Consider the linear discrete-time system
(

y1

y2

)
= G(z)

(
d
f

)
, G(z) =

(
g11(z) g12(z)
g21(z) g22(z)

)

where y1 and y2 stand for observed signals, G(z)
is a transfer matrix with full normal rank, and
d and f are respectively disturbance and control
inputs. Assume that both y1 and y2 are available
for identification as well as feedback, but y1 only
is a signal to be controlled or evaluated (Fig. 1).

To motivate our approach, we start by pointing
out the following point: In order to suppress the
effect of d to y1 perfectly, we have the equation

(
d
f

)
= G−1

(
0
y2

)
, G−1(z) =

(
h11 h12

h21 h22

)
.

Then, provided that h12 is nonzero, there exists
f = (h22/h12)d such that y1 = 0; i.e., the effect of
d to y1 is perfectly suppressed. Furthermore, this
is realized by the linear feedback f = h22y2. This
suggests that, if we obtain G(z), then the control
performance can be greatly improved.

The above discussion is related to the classical
disturbance rejection (Wonham, 1974), but is not
always feasible, since this feedback may easily

2 A detailed exposition of this approach can be found in
(Nitta and Sugimoto, 2004)
3 This idea has originally appeared in (Suzuki et al., 2004)

induce instability. It is more practical in general
to apply H∞ methods to this end (Fig. 2).

Usually we design an H∞ controller according to
the policy as in Fig. 3, assuming d in the worst
case. This is because, so far, we have been unable
to estimate the dynamics corresponding to d. If,
in contrast, we use G(z) as in Fig. 4, then we can
naturally attain better performance.

We will explain this policy by a numerical example
in the next section.
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Fig. 2. Disturbance suppression via feedback.
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Fig. 4. Proposed feedback control system.

2.2 Numerical Simulation

We adopt the sampling frequency 100 Hz, and
use time signal from 0 sec to 2.55 sec, so that



we obtain 256 samples. Let us now consider the
transfer matrix in left coprime factorization form
G(z) = D−1(z)N(z) such that

D(z) = Iz2 + D1z + D2, N(z) = N0z
2

D1 =
[

0.09 −0.12
−0.13 −1.06

]
, D2 =

[
0.28 1.04
0.08 0.58

]
,

N0 =
[
1.00 −0.60
0.20 1.00

]
,

We have applied input signals (d, f) as in Fig. 5
and observed output signal (y1, y2) as in Fig. 6.
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Fig. 5. The waveform of input signals.
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Fig. 6. The output signals.

By means of the polynomial ICA method given by
(Sugimoto and Nitta, 2005), we have retrieved the
input signal as in Fig. 7, and identified the system
parameter as

D1 =
[

0.065 −0.101
−0.155 −1.029

]
, D2 =

[
0.256 1.021
0.073 0.521

]
,

N0 =
[
1.000 −0.536
0.197 1.000

]
,
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Fig. 7. Estimated input signals.

Although the coefficients are slightly different
from the true values, the Bode diagram of the true
and the identified systems indicates that they are
in good agreement (Fig. 8).
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Fig. 8. Bode diagram. (Solid line: estimated value,
Dashed: true value)

We have designed H∞ controller using the gener-
alized plant given in Fig. 3 (conventional method)
with the weighting function

Ws =
0.001z − 5× 10−8

z − 0.9999
. (1)

We have also designed H∞ controller according
to Fig. 4 (proposed approach) with the obtained
system parameter. Now Fig. 9 shows the response
of the closed-loop systems by these two feedbacks.
The upper graph (proposed) indicates that the
signals are less than 3 × 10−3. The effect of the
disturbance is drastically suppressed.
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Fig. 9. Response from d to y1, y2. (Upper: pro-
posed method, Lower: conventional method.
Note that the range of the vertical axis largely
differs.)

We have also obtained impulse response of the
both closed-loop systems (Fig. 10). Finally, we
have computed singular values of the transfer
matrices (Fig. 11). The proposed method gives
much smaller singular values than other cases.
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Fig. 10. Impulse response. (Upper: proposed
method, Lower: Ordinary method. Note the
range of the vertical axis.)
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Fig. 11. Singular value plot of d to y1 and y2.
(Solid line: proposed method, Dashed: con-
ventional, Dotted: control-free)

3. FAULT DETECTION BY OBSERVING
OUTPUT ONLY

3.1 Problem Formulation

Fig. 12. Roll bending machine.

As a motivation, let us consider a machine
(Fig. 12), which is commonly found in manu-
facturing factories. Such a machine is subject to
vibration (i.e., disturbance) from the environment
or even from the motion of the machine itself.
Even if we can not observe the vibration source
directly, we are able to observe the displacement
as a result of disturbance. If, further, we detect
the change of mechanical structure from these ob-
served signals, and differentiate it from the change
of vibration source, then it will be useful since we
can find fault by monitering the vibration only.

The authors have performed an experiment to
detect a fault of a mechanical system only by
observing its vibration. In practice we can mea-
sure such vibration (displacement) as a result of
disturbance, but can hardly measure the source

disturbance (force) in itself. Hence, if a fault of the
machine causes a change of the vibration (output),
it may appear indistinguishable from the change
of the source disturbance (input). However, our
method indeed makes it possible to detect the
fault only by observing the vibration.

The experimental system is constructed so that
it is more vibrant than those in actual manu-
facturing facilities and we can easily observe the
vibration effect (Fig. 13) in the last page. The
sensing part consists of displacement sensors and
amplifiers (Fig. 14).
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Fig. 14. Signal flow in the experimental system.

3.2 Results of Experiment
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Fig. 15. Observed signals.

Observed signals are shown in Fig. 15. The up-
per and lower waveforms are those observed by
the upper and lower sensors, respectively. The
waveforms are in three parts. In the first part the
system is in a normal mode. In the second part,
it is still in the normal mode, but the frequency
of the disturbance signal (motor) changes. In the
third part, the system is in an abnormal mode
(i.e., fault; see also Fig. 13). In order to avoid
error due to transient behavior, these waveforms
have been generated individually and combined as
data, instead of generating real “fault”.

We then compute G(z) by the proposed method.
Figs. 16 and 17 show Bode diagram and pole
configuration of G(z), respectively.
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Fig. 17. Poles of the identified systems.

In Fig. 16, some of the shapes are different be-
tween “normal” and “normal, input frequency
changes,” though they should be the same. This
is because our assumption made in PART I is
not satisfied in this system. Still, the fault can be
detected since the peaks are different. Fig. 17 also
detects the fault in the sense that the poles shift.
Thus we have succeeded in differentiating change
in the input and the vibration mode (fault).

From a practical viewpoint, however, the above
method is insufficient since real time processing is
difficult. By combining FastICA, we have derived
a faster algorithm illustrated by Figs. 18, 19, 20.
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Fig. 18. Block diagram of the proposed algorithm.

4. CONCLUDING REMARKS

In the second application we have succeeded in
finding fault in spite that the system does not
satisfy the assumption in (Sugimoto and Nitta,
2005). In the authors’ opinion, this is because the
proposed method can identify partial information
of the system even in such a case. This suggests
that our method is applicable to a wider class.
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Fig. 19. Flow chart of the proposed algorithm.
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Fig. 20. Time chart of the experiment.

The authors wish to thank reviewers’ valuable
suggestions, although some of them can not be
reflected in the final vesion due to lack of space.
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Fig. 13. Appearance of the experimental system.

10
-1

10
0

10
1

10
2

From: In(2)

10
-1

10
0

10
1

10
2

-30

-25

-20

-15

-10

-5

0

5

10

15

T
o
:
 
O
u
t
(
2
)

-20

-10

0

10

20

30

From: In(1)

T
o
:
 
O
u
t
(
1
)

Normal                  

Input frequency changes 

Abnormal 

Normal 

Fig. 16. Bode diagram (magnitude of each entry in 2× 2 matrix) of the system identified for three cases.

Table 1. Peak Freqency of bode diagrams and poles.

Peak frequency (rad/s) Poles
Normal 13.8 0.21± 0.95i, 0.85, −0.08± 0.29i, 0.26
Normal, with disturbance changes 13.8 0.18± 0.95i, 0.86, −0.10± 0.22i, 0.52
Abnormal 3.97 0.8± 0.36i, −0.76, 0.14± 0.20i, −0.21


