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Abstract: Observation issues for reaction systems is of fundamental importance
since there is a lack of sensors and the uncertainties can be very high. The objective
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and detectability of such systems, with a particular concern about the design of
unknown input observers. Copyright c©2005 IFAC
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1. INTRODUCTION

Reaction systems is a class of nonlinear dynami-
cal systems that is widely used in areas such as
chemical and biochemical engineering, biomedical
engineering, biotechnology, ecology, etc. (Robust)
Observation issues for this class of systems is of
fundamental importance since there is a lack of
sensors and the uncertainties can be very high. It
is not surprising that there is an intensive research
activity to design observers, or software sensors,
for these systems (Bastin and Dochain, 1990;
Dochain and Vanrolleghem, 2001; Dochain, 2003).
It is well known, that the existence of observers for
dynamical systems is intrinsically related to the
observability, or detectability, of the system. How-
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ever, there are few studies in the literature dealing
with the observability, detectability properties of
reacting systems. Most of these studies are local
in nature (Dochain and Chen, 1992). However, a
satisfactory solution to the observation problem is
global, since it seems unreasonably to require that
the initial condition of the system is up to a small
error known, when one of the motivations to use
an observer is precisely the lack of information on
this initial state!

The objective of this work is to propose a method-
ology to make a global analysis of observability
and detectability of reaction systems. This is in
contrast to the usual local results of the literature.
When there are no uncertainties the usual method
to do a global observability analysis is by means
of the observability map (Zeitz, 1989; Gauthier
and Kupka, 2001). However, there is no system-
atic method to study detectability for nonlinear
systems. In this work a methodology is presented
to carry out a global observability/detectability
analysis of uncertain reaction systems, when the



uncertainty is represented as an arbitrary and
unknown input signal. For this kind of systems
no method is known to study observability. This
method is an extension for the uncertain case of
the idea used for the analysis of the induction ma-
chine under sensorless operation (Ibarra-Rojas et
al., 2004). Other approaches are given in (Ponzoni
et al., 2004), based on structural information,
but restricted to non dynamical representations
of the plant in steady state. The cornerstone of
this result is the strongly indistinguishable trajec-
tories concept (internal trajectories of a system
that are different under the same input/output
behavior under uncertain inputs) and the main
result is the characterization of the complete set
of this kind of functions for the uncertain reaction
system, including both types of indistinguishable
trajectories: the divergent (non-observable) ones,
i.e. those which are not possible to identify by
input/output measurements, and the asymptoti-
cally convergent (detectable) ones, i.e. those that
can be determined by the input/output behav-
ior asymptotically. The proposed methodology
achieves the desired characterization by construct-
ing a nonlinear dynamical system, called strongly
indistinguishable dynamics, whose set of solution
trajectories corresponds to the aforementioned set
of strongly indistinguishable behaviors, i.e. every
solution trajectory of this system is an strongly
indistinguishable trajectory for the studied sys-
tem. Some sufficient conditions for an uncertain
reaction system to be observable/detectable or to
be not observable/not detectable will be given.

The paper is organized as follows. A general
model of reaction systems is given in Section 2.
Global observability/detectability properties are
introduced for uncertain systems and their rela-
tionship with the existence of observers is studied
in Section 3. In Sections 4 and 5 the observability
properties of uncertain reaction systems is ana-
lyzed and their consequences for observer design
is given in Section 6.

2. MODEL OF REACTION SYSTEMS

A general state-space model of reaction systems is
generally obtained from mass and energy balances
(Bastin and Dochain, 1990; Dochain et al., 1992;
Dochain and Vanrolleghem, 2001) :

dc

dt
= K̄ϕ (c, T ) + D (cin − c)−Qc (c, T ) + F̄

dT

dt
= − 1

ρCp
∆HT ϕ (c, T ) + D (Tin − T )−QT

where c ∈ Rn−1, T ∈ R, K̄ ∈ R(n−1)×q, ϕ ∈ Rq,
D ∈ R, Qc ∈ Rn−1, F̄ ∈ Rn−1, ρ ∈ R, Cp ∈ R,
∆H ∈ Rq, QT ∈ R, cin ∈ Rn−1 and Tin ∈ R
are the component concentration vector, the tem-
perature, the stoichiometric coefficient matrix, the

reaction rate vector, the dilution rate, the gaseous
outflow rate vector, the feedrate vector, the den-
sity, the heat capacity, the reaction heat vector,
the heat exchange term, and the inlet concentra-
tion vector and temperature, respectively. In most
applications the measured variables are a subset
of the state variables or, more generally, a linear
combination of them.

This system can be written in a compact and
generalized form as

ΣR :
{

ẋ = Kϕ (x) + D (xin − x)−Q (x) + F ,
y = Cx .

(1)
where x ∈ Rn is the state, and y ∈ Rm is the
output vector. This model includes also the case
when several reactors are considered, for which
D ∈ Rn×n is a matrix. In practice the knowledge
of the model is usually very uncertain, since the
parameters and nonlinearities of the system are
difficult to identify, and they change over the time.
In particular, the reaction rates are usually poorly
known. This makes the observation problem chal-
lenging. In this paper we shall concentrate on the
case when the reaction rates are unknown, but
the rest of the model is assumed to be known, i.e.
u = F −Q (x) + Dxin is considered a known sig-
nal (Bastin and Dochain, 1990). This uncertainty
will be modeled as an (arbitrary) unknown input
w = ϕ (x).

3. OBSERVABILITY AND DETECTABILITY
CONCEPTS FOR NONLINEAR UNCERTAIN

SYSTEMS AND EXISTENCE OF
OBSERVERS

Since the uncertainties in the reaction system (1)
will be represented by unknown inputs, let us
consider a general nonlinear system described by

Σ :
{

ẋ = f (x, u, w) , x (0) = x0

y = h (x) ,
(2)

where x ∈ Rn is the state vector, u ∈ Rp is
the input vector, w ∈ Rq is a vector of unknown
inputs, y ∈ Rm is the output vector, and f and
h are sufficiently smooth functions. The solution
of (2) passing through x0 at t = 0 and corre-
sponding to the input function u (·) and w (·) is
denoted as x (t, x0, u (·) , w (·)). In a similar way,
let us denote the output y (t, x0, u (·) , w (·)) =
h (x (t, x0, u (·) , w (·))). Whenever there is no con-
fusion, these will be simply denoted as x (t) and
y (t). Let us assume in addition that the system
Σ is complete, i.e. the state trajectories x (t) are
defined for every t ≥ 0, every initial condition
x0 ∈ Rn and every input u (·) ∈ U , and w (·) ∈ W,
where U , W are classes of input functions.

For systems without unknown inputs a basic con-
cept is that of indistinguishable states (Hermann



and Krener, 1977). Roughly speaking two states
are said to be indistinguishable if they are differ-
ent although both the input and the output of the
system are identical. The importance of this defin-
ition comes from the fact that observer’s existence
for the system strongly relies on the existence (and
the type) of this kind of functions. For systems
with unknown inputs (2) similar concepts can be
introduced.

Definition 1. (Strong Indistinguishability and
Observability and Strong(*) Detectability)
Consider for system (2) an input u (·), an ini-
tial condition x ∈ Rn and an unknown in-
put w (·). If x̄ ∈ Rn, x̄ 6= x, is such that
y (t, x, u (·) , 0) = y (t, x̄, u (·) , w (·)), ∀t ∈ [0,∞)
and for some w (·) ∈ W , then x̄ is a strongly u (·)-
indistinguishable state of x. IUI

(u,x) denotes the set
of strongly u (·)-indistinguishable states of x.
System (2) is strongly observable if for every x ∈
Rn and every u (·) ∈ U , IUI

(u,x) = {x}.
System (2) is strongly detectable if for every
x ∈ Rn, every u (·) ∈ U and for every x̄ ∈
IUI

(u,x) and the corresponding w (·) that renders
x̄ indistinguishable limt→∞ ‖x(t, x̄, u (t) , w (·)) −
x(t, x, u (t) , 0)‖ = 0 .

System (2) is strong* detectable if for some x, x̄ ∈
Rn, u (·) ∈ U and w (·) ∈ W it happens that
limt→∞ ‖y(t, x̄, u (t) , w (t))−y(t, x, u (t) , 0)‖ = 0 ,
then it follows that limt→∞ ‖x(t, x̄, u (t) , w (t)) −
x(t, x, u (t) , 0)‖ = 0 .

Note that strong detectability excludes the exis-
tence of diverging strongly indistinguishable tra-
jectories. It may be surprising that two detectabil-
ity definitions have been introduced. For LTI sys-
tems without unknown inputs it is well-known
that if the unobservable subsystem is asymptot-
ically stable then if as t → ∞ y (t) → 0 then
x (t) → 0. However, for continuous time systems
with unknown inputs this is not longer the case,
as has been pointed out by (Hautus, 1983).

Remark 2. It is clear that strong* detectability
implies strong detectability, but the converse is
not true. Moreover, strong observability implies
strong detectability, but it does not necessarily
imply strong* detectability.

These properties are indeed related to the exis-
tence of Unknown Input Observers (UIO).

Definition 3. (UI Observer) Consider a system

Ω :
{

ż = ϕ (z, u, y) , z (0) = z0

x̂ = χ (z, u, y) ,
(3)

where z ∈ Rr is the state vector and ϕ, χ
are functions defined in (z, u, y) ∈ Rr × Rp ×

Rm. z(t, z0, u, y) denotes a solution of (3) passing
through z0 at t = 0 and corresponding to (u, y).
System (3) is called an unknown input observer
(UIO) for system (2) if ∃z0 ∈ Rr such that
∀x0 ∈ Rn, ∀u (·) ∈ U and ∀w (·) ∈ W
lim

t→∞
‖x̂(t, z0, u, y(t, x0, u, w))−x(t, x0, u, w)‖ = 0 .

Note that in this definition no major restriction
has been imposed on the observer, except for the
convergence of the observer for every trajectory,
i.e. initial condition and input, of the plant.

For LTI systems it is shown by (Hautus, 1983)
that strong* detectability is equivalent to the
existence of an UIO and that strong detectability
or observability are not sufficient for the existence
of an UIO. Let us now partially generalize the
concept for nonlinear systems.

The following result is indeed valid for every
reasonable definition of observer, since it depends
on a structural restriction of the system and not
on the structure of the observer.

Lemma 4. If system (2) has an unknown input
global observer, then it is strong* detectable.
Moreover, if the convergence of the observer can
be assigned arbitrarily fast, then it is strongly
observable.

PROOF. Suppose that system (2) is not strong*
detectable. Then there exist an input u (·), two
states x1, x2 ∈ Rn and an unknown input w (·)
such that as t →∞, y (t, x1, u, 0) → y (t, x2, u, w),
but x(t, x1, u, 0) − x(t, x2, u, w) 9 0. For an UI
(global) observer Ω of Σ there exists z0 ∈ Rr

such that x̂(t, z0, u, y (t, x1, u, 0)) → x(t, x1, u, 0)
and x̂(t, z0, u, y (t, x2, u, w)) → x(t, x2, u, w). Note
x̂(t, z0, u, y (t, x1, u, 0)) → x̂(t, z0, u, y (t, x2, u, w)).
But since

lim
t→∞

{x(t, x1, u, 0)− x(t, x2, u, w)} =

= lim
t→∞

{x (t, x1, u, 0)− x̂ (t, z0, u, y1)}+

+ lim
t→∞

{x (t, x2, u, w)− x̂ (t, z0, u, y2)} = 0 ,

the assumption on x1, x2 is contradicted.
To prove the second assertion, suppose by con-
tradiction, that there are two convergent indistin-
guishable trajectories. Then an observer cannot
converge to the correct state at a rate greater than
the convergence rate of the trajectories. 2

From this lemma it is clear that for studying the
possibility of estimating state trajectories of a
given dynamical system, one can first investigate
the existence of robustly indistinguishable trajec-
tories and then determine if they are converging
or not, i.e. if the system is robustly detectable or
observable.



4. THE ERROR AND INDISTINGUISHABLE
DYNAMICS OF REACTION SYSTEMS

The conditions given above are abstract and no
checkable conditions were given. The objective of
this section is to introduce a dynamical interpre-
tation of the concepts introduced in the previous
section. This interpretation will be used in the
following section to derive necessary conditions for
the existence of global observers. This dynamic
characterization, although possible for a general
nonlinear system, will be derived here for the case
of interest in the paper, the uncertain reaction
system (1). It will be assumed that the model is
well-known, except for the reaction rates that are
completely unknown, so that they can be consid-
ered as unknown inputs.

The following Gedanken-experiment leads to the
desired characterization of strong* and strong
detectability: Two identical systems, but with
different initial conditions and unknown inputs,
evolve in time

ẋi = Kwi −Dxi + u , xi (0) = xi0 ,
yi = Cxi , i = 1, 2 .

Introducing the variables x = x1, y = y1, w = w1

and x̃ = x1 − x2, ỹ = y1 − y2, w̃ = w1 − w2, the
error dynamics of the plant is given as

ẋ = Kw −Dx + u , x (0) = x0 ,
·
x̃ = Kw̃ −Dx̃ , x̃ (0) = x̃0 ,
y = Cx ,
ỹ = Cx̃ .

(4)

Since for this system the evolution of x does not
affect the error state x̃, the basic properties can
be studied via the reduced linear system

·
x̃ = −Dx̃ + Kw̃ , x̃ (0) = x̃0 ,
ỹ = Cx̃ .

(5)

Consider also the linear Differential-Algebraic
(DA) system,

·
x̃ = −Dx̃ + Kw̃ , x̃ (0) = x̃0 ,
0 = Cx̃ .

(6)

derived from (5) by setting ỹ (t) = 0 for all t ≥ 0.
This system will be called the (reduced) Strongly
Indistinguishable Dynamics of the plant (1) with
unknown reaction rates. Strong(*) detectability
and observability of the plant can be determined
and characterized analyzing the properties of the
solution set of the Strong Indistinguishable Dy-
namics. The following result is a simple conse-
quence of the definitions.

Lemma 5. Consider the system (1), with un-
known reaction rates.

(1) Two trajectories are strongly indistinguish-
able if and only if they are of the form
x(t, x0, u (t) , w (·)) and x(t, x0, u (t) , w (·)) +

x̃(t, x̃0, w̃ (·)) , where x (t) is a solution of (1)
and x̃ (t) is a solution of (6).

(2) The system is strongly detectable if and only
if the constrained system (6) is globally as-
ymptotically stable.

(3) The system is strongly observable if and only
if the constrained system (6) is trivial, i.e. the
only solution is x̃ (t) = 0.

(4) The system is strong* detectable if and only if
for the system (5) whenever limt→∞ ỹ (t) = 0
it follows that limt→∞ x̃ (t) = 0.

In the special case considered in this paper, the
indistinguishable dynamics (5) is very simple,
since it is decoupled from the plant and because
it is a linear time-varying system. This allows a
very deep analysis, that is seldom possible.

Recall that a usual characterization of the zeros
(or zero dynamics) of a system corresponds to
the set of pairs of initial conditions and inputs,
such that the output of the system is zero for
all the time. This means that the zero dynamics
of the indistinguishable dynamics (5) is given by
the constrained system (6). Note that the strong
indistinguishable trajectories correspond to the
trajectories of the zero dynamics, that strong
observability is equivalent to the absence of strong
indistinguishable trajectories, i.e to the absence of
zeros and strong detectability coincides with the
asymptotic stability of the zero dynamics.

Lemma 5 gives a dynamical interpretation of the
observability/detectability concepts for the spe-
cific case considered. It is clear, that this idea can
be used for more general systems, although the ob-
tained indistinguishability dynamics systems are,
in general, not so simple as here. Compared to
the usual observability criteria, that are based
on constructing the observability map with the
vector fields, this characterization has several ad-
vantages. 1) The approach is not local whether in
time nor in the state space. 2) It allows to deter-
mine detectability, what is usually impossible in
the other criteria. 3) The dynamical interpretation
is appealing. 4) Several nonlinear tools can be
used to make the analysis, as for example the
characterization of the zero dynamics in geometric
control. 5) Lyapunov functions can be used for
the characterization of the properties. 6) It is of
very general nature. No special smoothness or
structural properties are necessary. 7) For systems
with unknown inputs there is no observability test
based on the system vector fields in the literature.

5. DETECTABILITY ANALYSIS FOR
UNCERTAIN REACTION SYSTEMS

The analysis of the error dynamics (4) provides
basic information for the design of UIO’s. Since



strong* detectability is a necessary condition for
the existence of UIO (see Lemma 4), the objective
is to determine conditions on the system, such
that when ỹ → 0 as t → ∞ it follows that x̃ → 0
as t →∞. Since D is in general a time varying ma-
trix the results for the LTI case of (Hautus, 1983)
do not apply. It is clear that asymptotic stability
of the zero dynamics (6), i.e. asymptotic minimum
phaseness, or equivalently strongly detectability,
is a necessary property. Sufficient conditions (in
the LTI case also necessary) are:

Proposition 6. Consider the system (5) with con-
stant matrices C and K and a uniformly bounded
time-varying matrix D. ỹ → 0 as t → ∞ implies
x̃ → 0 as t →∞ if

(1) rank (CK) = rank (K),
(2) System (5) is exponentially minimum phase,

i.e. the system described by the DAE (6) has
an exponentially stable equilibrium point.

PROOF. Define a regular output transformation

ȳ =
[

ȳ1

ȳ2

]
= Sỹ =

[
S1

S2

]
ỹ (7)

where S1 ∈ Rq×m, S2 ∈ R(m−q)×m and S is
regular. Due to condition (1) S1, S2 and M , such
that MK = 0, can be so selected, that

T =




T1

T2

T3


 =




S1C
S2C
M


 ,

defines a state transformation z = T x̃. Defining
zi , Tix̃, i = 1, 2, 3, system (5) in the new
coordinates is given by

ż1 = D̄11z1 + D̄12z2 + D̄13z3 + w

ż2 = D̄21z1 + D̄22z2 + D̄23z3 (8)
ż3 = D̄31z1 + D̄32z2 + D̄33z3

ȳ =
[

ȳ1

ȳ2

]
= C̄z =

[
z1

z2

]

where

D̄ = −TDT−1 =




D̄11 D̄12 D̄13

D̄21 D̄22 D̄23

D̄31 D̄32 D̄33


 ,

C̄ = SCT−1 =
[

Iq 0 0
0 Im−q 0

]
.

The zero dynamics of the original system in the
new coordinates is then

ż3 = D̄33z3 , 0 = D̄13z3 + w , 0 = D̄23z3 (9)
that by hypothesis is assumed to be exponentially
stable. By standard results of input/output sta-
bility of LTV systems (Callier and Desoer, 1991)
it follows that when z1 → 0 and z2 → 0 then
z3 → 0 as t → ∞ in system (8) and therefore
ỹ → 0 implies x̃ → 0 for (5). 2

Remark 7. Note that the first condition implies
that m ≥ q, i.e. the number of measurements has
to be larger than the number of unknown inputs.

Remark 8. Exponential minimum phaseness has
to be required, since for LTV systems asymptotic
stability does not assure input/output stability
(see (Rugh, 1993)), that is required in the subsys-
tem z3 in (8). To clarify this observation consider
the scalar system with bounded coefficients

ẋ (t) =
−2t

t2 + 1
x (t) + u (t) , x (t0) = x0 ,

y (t) = x (t) .

This system is not exponentially stable since the
transition matrix is given by

Φ (t, t0) =
t20 + 1
t2 + 1

.

But it is uniformly stable and the zero-input re-
sponse goes to zero for every initial state. How-
ever, it is not BIBO stable and a vanishing input
does not produce a vanishing output, i.e. u → 0;
y → 0 as t → ∞. To see this consider the output
response for t0 = 0 and x0 = 0

y (t) =
1

t2 + 1

∫ t

0

(
τ2 + 1

)
u (τ) dτ .

For u = 1 the output y (t) =
(
t3/3 + t

)
/

(
t2 + 1

)
is unbounded. For u (t) = tr/

(
t2 + 1

)
, with 1 <

r < 2, u (t) → 0 but y (t) = t(r+1)/ (r + 1)
(
t2 + 1

)
is unbounded! And so in general exponential sta-
bility has to be imposed. However, exponential
minimum phaseness is also not necessary. Con-
sider for example subsystem z3 in (8) and that
D̄31 = 0 and D̄32 = 0. In this case asymptotic
minimum phaseness is sufficient to assure the con-
vergence.

Remark 9. It is interesting to note, that it is pos-
sible to have a system that is strong* detectable
and strongly observable. This is the case when the
only solution of (9) is z3 = 0. However, this is not
possible if m = q.

6. OBSERVER DESIGN

For LTI systems the conditions in the previous
proposition are also sufficient for the existence of
an UIO. For time-varying systems this seems not
to be the case. However, under some mild further
assumptions (always satisfied in the LTI case),
an UIO can be constructed. For simplicity it will
be assumed that the plant has been transformed
according to the state and output transformation
introduced in the proof of Proposition 6.

Proposition 10. Consider the reactor system (1)
with constant matrices C and K, and a uniformly



bounded time-varying matrix D, that satisfies the
conditions of Proposition 6 and is represented in
new coordinates as

ξ̇1 = D̄11ξ1 + D̄12ξ2 + D̄13ξ3 + w + u1

ξ̇2 = D̄21ξ1 + D̄22ξ2 + D̄23ξ3 + u2

ξ̇3 = D̄31ξ1 + D̄32ξ2 + D̄33ξ3 + u3

ȳ =
[

ȳ1

ȳ2

]
= C̄ξ =

[
ξ1

ξ2

]
.

Consider the subsystem independent of the un-
known input

ξ̇2 = D̄21ξ1 + D̄22ξ2 + D̄23ξ3 + u2

ξ̇3 = D̄31ξ1 + D̄32ξ2 + D̄33ξ3 + u3

ȳ2 = [0, I, 0] ξ = ξ2 ,

and a reduced order UIO for the plant of the form

·
ξ̂2 = D̄21ȳ1 + D̄22ξ̂2 + D̄23ξ̂3 + u2 + L1 (ŷ2 − y2)
·
ξ̂3 = D̄31ȳ1 + D̄32ξ̂2 + D̄33ξ̂3 + u3 + L2 (ŷ2 − y2)

(10)

ŷ2 = [0, I] ξ̂ = ξ̂2 ,

(1) If the pair
(

[I, 0] ,
[

D̄22 D̄23

D̄32 D̄33

])
is UCO,

then (10) is a reduced order UI observer
whose convergence dynamics can be arbitrar-
ily assigned.

(2) If the pair
(

[I, 0] ,
[

D̄22 D̄23

D̄32 D̄33

])
is uniformly

detectable, then (10) is a reduced order UI
observer.

It is interesting to note that the results derived in
the literature under the name asymptotic observer
(Bastin and Dochain, 1990), that are able to esti-
mate the state of a bioreactor without knowledge
of the reaction rates, are especial cases of the
results in this paper. In fact, our results are a
justification from the observability/detectability
point of view of the asymptotic observers.

In particular if D is a scalar, i.e. D = dI, then if
the measurements are selected such that condition
(1) of Proposition 6 is satisfied, then condition
(2) is equivalent to the persistency of excitation
of the input d (t) (Bastin and Dochain, 1990).
In this case it is however impossible to satisfy
condition (1) of Proposition 10, an therefore it is
not possible to assign the convergence dynamics
of the UIO, no matter how the measurements are
selected.

7. CONCLUDING REMARKS

In this paper a new method has been pro-
posed for the characterization of the observabil-

ity/detectability properties of uncertain reaction
systems, when the uncertainty is modeled as an
arbitrary unknown input. A fairly complete char-
acterization of these properties for the reactor
system with unknown reaction rates has been
obtained using this method and sufficient con-
ditions for the possibility of constructing robust
(asymptotic) observers have been given. These
initial results open the possibility to study further
other situations in a methodological manner. This
will be pursued in future work.
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