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Abstract: This paper deals with the possibility of considering the non-conventional
sampling pattern as a design parameter in a control system where the controller is a PID.
Once the PID is designed and placed in a single rate control system, the goal is to obtain
similar behaviours for two different stages: the first considers a non-conventional control
system with the same PID, and the second, a single rate control system but varying the
initial PID parameters. Copyright © 2005 IFAC
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1. INTRODUCTION. APPROACH OF THE
PROBLEM.

A multirate sampling system is a system on two or
more variables are updated at different frequencies.
Typically, a global period T0 is considered and,
inside it, different samplings (at different rates for
each sampler) are spaced in a regular way.

A particular case of multirate sampling is the cyclic
one. In this case, variables are sampled at irregular
intervals, considering also the existence of a global
period T0  and cyclic repetition. In (Cuenca et al.,
2004) and (Salt et al., 2004) a modelling
methodology and a design technique for this kind of
sampled systems are respectively introduced.

Both, multirate sampling and the particular case of
cyclic sampling, are non-conventional ways to carry
out system sampling. Their application can appear in
a wide range of situations. For instance:
- Time sharing computer by means of several

detection services (Jury and Mullin, 1959).
- Aerospace applications (Halevi and Ray, 1988),

robotic applications (Tsao and Hutchinson,
1994), chemical process control (Morant et al.,

1986), computer hard disc control (Baek and Lee
1999).

- Missing and scarced data (Albertos et al., 1999).
- Distributed and multiprocessors control systems

(Hovestädt, 1991).
- Real-time control systems (Salt et al., 2000).
- Multivariable control systems (Vélez, 2000).

The main goal of this paper is to make possible that
the non-conventional sampling pattern can be
considered as a design parameter. In order to achieve
it, firstly a PID is designed to work in a single rate
control system. Once its behaviour is observed, the
idea is to change the sampling pattern going towards
a non-conventional one. It is easy to think, the
system performance will vary, and then, the aim is to
achieve this new performance by means of the single
rate structure, but modifying the initial PID
parameters (kp-td-ti). In short, both stages (the non-
conventional and the modified single rate) can
achieve similar behaviours.

As it is obvious, the behaviour of the single rate stage
can be obtained by means of a classical single rate
control structure. Nevertheless, in order to obtain the
behaviour for the non-conventional control stage, the



structure of the figure 1 must be considered. This
diagram presents a MRIC (Multirate Input Control)
structure, where, each T0 instants of time, N
(multiplicity) actions are injected to the process and
only 1 output is taken from it.

In more detail, the control system of figure 1 works
in the following way: the PID controller, GR(s), and
the process, Gp(s), are preceded of a ZOH (Zero
Order Hold) device, which is defined at t0 period (it
is known as intersampling period, and it coincides
normally with the greatest common divisor of the
different periods of the system). Moreover, the
output of the system is taken at T0 period (it is
known as metaperiod, and it coincides normally with
the least common multiple of the different periods of
the system). In the same way, the reference and the
error signals are sampled at T0 period. Finally, in the
input of the process a non-conventional pattern is
established, so that a non-uniform succession of
control actions within the metaperiod can be injected
to the process and their effect over the system
response observed. This response can be also
deduced examining the poles and zeros location in
the Z plane.

So, the control and sampling structure of figure 1
makes possible to carry out different sampling
patterns for the non-conventional stage, which will
be compared with the single rate one, changing in
this case the initial parameters of the PID controller.

The present study is organised in two subsections. In
the first one, a series of empirical tuning rules are
presented, and in the second one, a later
considerations about the poles and zeros location are
commented.

Finally, to perform the study, it is necessary to
consider a working methodology, (Cuenca, 2004),
based on the use of the Kranc Operators, (Thompson,
1986), which permits modelling the control system,
and finally, simulating its behaviour, (Salt et al.,
2003).

Fig. 1. Control and sampling structure for the non-
conventional stage.

2. STUDY OF THE PROBLEM.

2.1 Empirical tuning rules.

In this subsection the goal is to achieve a series of
empirical rules, which permit, varying the initial
parameters kp-td-ti of the PID controller, to obtain
similar control system responses for single rate and
non-conventional stages.

In order to carry out the study, the following example
will be chosen:

• Process:
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• PID controller (with derivative filter):
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• Metaperiod and intersampling period:

sec015.00;sec18.00 == tT       (3)

In this study, the control system is modelled and
implemented in order to obtain different Poles and
Zeros Maps  (PZM) at T0 period for each considered
sampling scheme in the input sampler of the process.
Moreover, to achieve the pursued goal, a grid
together the different PZM obtained is included. This
grid is composed by different points, which establish
the location of the dominant pole of the single rate
system inside a range of values for kp-td-ti. In this
case, this dominant pole is a conjugated complex
one. Concretely, its positive imaginary side will be
taken into account.

The proposed analysis in the PZM can be observed in
a general way in the figure 2. Here, different closed
loop poles and zeros (and the open loop poles) for the
different sampling patterns can be seen. In the figure
3, a more detailed perspective for the positive
imaginary side of the dominant pole is shown. In this
case, the grid intersects non-conventional locations
for N=2 and single rate ones with kp-td-ti modified.
Concretely, kp varies inside the range [5.5 – 8] by
means of increments of 0.25, td inside the range
[0.18 – 0.23] by means of increments of 0.01, and ti
inside the range [2 – 3.5] by means of increments of
0.5. The sense of increment for the three parameters
is marked in the figures, so that for each value of kp
(there are 11) can be seen the variation of the
location of the pole according to the different values
of td (there are 6) and ti (there are 4). Finally, in the
figure, the notation [0] makes reference to the single
rate sampling at period T0 for the input sampler of
the process, and [0,t] makes reference to the non-
conventional sampling in the instants 0 and t of each
metaperiod T0 for the same sampler. Each boldface
cross mark is related to the non-conventional pattern
indicated close of the mark.



Fig. 2. General PZM with grid.

Fig. 3. Detailed PZM with grid.

Starting from the figure 3, to make similar the single
rate response and the non-conventional one (N=2),
and, moreover, if the single rate structure wants to be
maintained, then the initial kp-td-ti parameters
(kp=8, td=0.2, ti=3.2) must be varied. This variation
should follow the next empirical rules:

• kp should be reduced. This fact can be explained
by the following argument: with this non-
conventional pattern (N=2), the controller injects
twice actions to the process, and the energy to be
supplied must be shared out between them.

• td should be augmented in general for the non-
conventional cases where the sampling is
produced in the first side of the metaperiod (that
is, from the instant 0 to the instant T0/N), and td
should be reduced in general for the contrary
cases (sampling in the second side of the
metaperiod).  So, a similar overdamping
coefficient can be obtained for complementary
cases (for example, [0, 0.015] and [0, 0.165], or
[0, 0.045] and [0, 0.135], etc), since, normally,
this cases have a similar response.

• ti carries out the fine adjustment of the system
response. Empirically it is not possible to deduce
a clear tuning rule, since kp and ti vary in the
same sense, and kp does it in a higher way (as
shown figure 3).

2.2 Later considerations about the rest of poles and
zeros location.

Once the empirical tuning rules have been deduced
(starting from the dominant pole), which can assure a
similar behaviour for modified single rate stages and
non-conventional (in this case, with N=2) ones, and
thus, allowing to establish the sampling pattern as a
design parameter for PID controllers, now it is
important to note an interesting aspect relative to the
rest of poles and zeros of the non-conventional
control system.

This aspect emphasises in the following fact:
although the dominant pole is well tuning for both
stages, if the location of the rest of closed loop poles
and zeros differ significantly, a not so accurate final
system response could be obtained.

The following example can illustrate this remark. So,
remembering the previous subsection, a first stage is
analysed, where it has been chosen the non-
conventional pattern [0, 0.165] and the modified
single rate for kp=7.5, ti=3.25 and td=0.19. In figure
4 both cases are represented by means of their PZM,
so that, the non-conventional case is represented by
little X-shaped cross and circles, and the single rate
by bigger ones. The dominant pole (conjugated
complex) clearly coincides for both cases, and, in the
same way, practically the rest of closed loop poles
and zeros. Thus, the system response is very similar
for both cases (figure 5), and even, the control
actions (notice only a peak in the final of the
metaperiod for the non-conventional case due to the
chosen pattern).
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Fig. 4. PZM for modified single rate case and for
non-conventional case (stage 1).
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Fig. 5. Response for modified single rate case and for
non-conventional case (stage 1).
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Fig. 6. Control actions for modified single rate case
and for non-conventional case (stage 1).
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Fig. 7. PZM for modified single rate case and for
non-conventional case (stage 2)
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Fig. 8. Response for modified single rate case and for
non-conventional case (stage 2).
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Fig. 9. Control actions for modified single rate case
and for non-conventional case (stage 2).

Nevertheless, a second stage is studied, where now
the non-conventional pattern is [0, 0.075] and the
modified single rate has kp=5.5, ti=3.5 and td=0.23.
The consequent PZM are represented in figure 7
(with the same notation than figure 4). In this stage,
although the dominant pole coincides practically in
both cases, the rest of poles and zeros differ clearly.
The consequence is a not so accurate system
response for both cases (figure 8). This fact can be
explained observing the significant differences
between control actions of this stage (figure 9).

Thus, besides the dominant pole, it is very important
to take into account the location of the rest of poles
and zeros of the non-conventional control system in
order to make similar both responses. In future
works, a quota, which indicates how different can
become the location of these poles and zeros between
both cases, will be searched.



3. CONCLUSIONS.

In the present paper, the possibility of considering
the sampling pattern as a design parameter for PID
controllers is analysed. In order to achieve it, it is
important to take into account the location of the
dominant closed loop poles of the system. Anyway,
it is important to observe always the location of the
rest of closed loop poles and zeros of the system,
since they could influence in the overall dynamic
response.

After establishing a series of empirical tuning rules,
the study shows it is possible to obtain similar
control system responses for non-conventional stages
and modified single rate ones. The consequent main
benefits are: to be able to improve the single rate
control system behaviour (this improved behaviour
corresponds to the achieved one by sampling the
system in a non-conventional way) and to establish a
clear relation between sampling pattern and PID
parameters.

Finally, the study is carried out for one concrete
example, but its conclusions can be easily
generalised to other examples.
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