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Abstract: A repetitive control scheme is proposed for constrained nonlinear optimal control problems. 
The lower level algorithm adjusts switching times for bang control arcs and parameters of interval 
polynomial approximations for interior control arcs. It is based on a linearization of optimal controller 
and performs reduced optimization with changes of control structure. The upper level finds the 
optimal control and recalculates the linearization each time the deviation from the optimal solution 
becomes too large. The linearized controller is analytically derived. The upper level uses the MSE 
method to determine the reference optimal control structure. Simulation and experimental tests show 
that the proposed approach yields an optimizing nonlinear controller, able both to ensure close to 
minimum-time point-to-point transition as well as to stabilize the state. Copyright © 2005 IFAC 
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1. INTRODUCTION 

The purpose of this paper is to improve the adaptive 
control algorithm, first presented in (Korytowski, et 
al., 2001). It is an extension of the neighboring 
optimum feedback (Bryson Jr., 1999; Pesch, 1989a, 
b). The controller reacts to state disturbances on two 
levels. The lower level adjusts control parameters 
basing on a linearization of optimal controller and 
performs reduced optimization whereas the upper 
level detects changes in the optimal control structure 
and recalculates the linearization each time the 
deviation of trajectory from the optimal one becomes 
too large. Both the reduced and full optimization rely 
on forced changes of control structure, which take 
place if suitable tests are satisfied. The linearized 
controller is described by an explicit linear relation-
ship between the measured or computed deviations 
of state and the corrections of control parameters. It 
is analytically derived with the use of discontinuous 
matrix solutions of the canonical variational system. 
The modifications of the results of (Korytowski, et 
al., 2001) include: 
- introduction of the horizon as a decision variable, 
- limitation of amplitude of control variations in the 

vicinity of the target state, 

- improved convergence due to stronger stabilization 
requirements. 

The sequence of boundary/interior arcs determines 
the structure of optimal control. Pesch’s approach 
(Pesch, 1989b), known as the repeated correction 
method, relies on the assumption of fixed control 
structure. This limitation is overcome using pre-
computed neighboring extremals (Pesch, 1989a), at a 
high computational cost. The approach proposed 
below applies also to varying control structure. This 
is achieved by combining the linearized feedback 
scheme with the monotonous structure evolution 
(MSE) method (Szymkat, et al., 2003), which makes 
it possible to generate or reduce arcs without 
considerable computational effort. Comparisons with 
the repeated correction scheme (Pesch, 1989b) and 
full repetitive optimization show that the new method 
gives good disturbance rejection at a low 
computational cost. 

2. OPTIMAL CONTROL PROBLEM 

Consider the minimum time problem of steering the 
state of the system 
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to an ε -neighborhood of a given state fx  ( 0>ε ) 
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0≥T  is the control horizon. The functions 0f  and 
1f  are twice continuously differentiable. The set of 

admissible controls U consists of all right-continuous 
functions →∞[,[: 0tu ]1,1[− . Define the Hamilton-

ian =),,( uxH ψ ),( uxfTψ  where the adjoint vari-

able nt R∈)(ψ  satisfies 
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The respective switching function is defined as 
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Its projection onto U at an admissible point u is given 
by 
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By the Maximum Principle, Uφ  is identically zero 
on an optimal control. The optimal control satisfies 

 0),(),,(sgn),( ≠== ψψψ xgxgxvu .     (8) 

The switching function φ  is continuously differenti-
able (Korytowski, et al., 2001). We assume that φ  
takes zero value at most at a finite number of points 
(switching times) mττ ...,,1 , Tt m <<<< ττ K10 , 
and its derivative is different from zero at every point 

mii ...,,1, =τ .  

The canonical system of equations is obtained by 
substituting the control (8) in (1) and (3) 

))(,( XvXFX =& ,   ],0[ Tt ∈ , ),(col ψxX = , 

)),,(),,((col),( uxHuxfuXF x ψ−=  

with the boundary conditions as in (1), (4). 

The variational equation for the canonical system, 
with jump conditions at switching moments was 
given in (Lastman, 1978)  
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where },,,{\[,] 210 mTtt τττ K∈ , 
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The terminal condition results from (4) 
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Xδ  is in general discontinuous at mτττ ,,, 21 K   
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where ],[ 10 ff  is the Lie bracket. Obviously 
1)( −

+− = ii ZZ . The dependence of the switching time 
variation iδτ  on Xδ  is determined from the identity 

0))(( ≡iτXg , see (Korytowski, et al., 2001) 
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Note that the function at )())(( tXtXg δT∇  is 
continuous at every switching time.  

Define a nn ×2  matrix solution V of the variational 
equation, satisfying 

 )()()( tVtJtV =& , },,,{\[,0] 21 mTt τττ K∈    (16) 

 ),(col)( IITV −= .              (17) 

The jumps at the switching moments are given by 

 )()( +=− + iii VZV ττ ,   mi ...,,2,1=         (18) 

Let ),(col 21 VVV =  with square matrices 1V  and 2V . 
Thus for any solution of (9), (12), (13) and every t 

 )()()( 1 TxtVtx δδ = , )()()( 2 TxtVt δψδ = .  (19) 

3. LINEARIZED CONTROLLER 

The construction of the linearized controller is based 
on (15) and the relationship between the variations of 
state and adjoint trajectories  

 )()()()( 1
12 txtVtVt δψδ −= .      (20) 

From now on it is assumed that )(1 tV  is nonsingular 
for every t. This crucial assumption is generically 
satisfied in practical control problems. The co-
efficient matrix 1

12 )()()( −= tVtVtK  is symmetric for 
every t and differentiable everywhere, except for the 
switching times. It satisfies a linear Riccati equation 
(Korytowski, et al., 2001). According to formula 
(19), the matrix 

 1
1 )()( −= tVtW           (21) 

represents the sensitivity of the terminal state of the 
optimal solution with respect to the state at t. 

Formulas (15) and (20) yield a relationship between 
the variation of the state trajectory and the variations 
of the switching times 

 )( ±Λ= ± iii x τδτδ ,   mi ...,,2,1=         (22) 
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Suppose that the state increment xδ  satisfies the 
variational equation in the interval ],[ Tt  for some 

[,[ 0 Ttt ∈  and is the result of a perturbation of the 
state at t by a known value )(txδ . The values of 

)( ±ix τδ  can be computed in advance by solving 
equations (9), (12), (13), and the respective 
corrections iδτ  of the switching times ti >τ  can be 
applied during the control process, provided 

 11 ++ +<+ iiii δττδττ    if  tii <+ δττ       (23) 

for }...,,1,0{ mi ∈ . By definition Tmm =+ ++ 11 δττ , 

000 t=+ δττ . If ti >τ  and tii <+ δττ , the control 
at t should change sign. To avoid too frequent 
switchings, the intervals between the time moments t 
at which the control in [t, T] is corrected, have a 
fixed length t∆ .  

From (19), )()()()( 1
11 txtVVx ii δττδ −±=± . Putting 

this into (22) and using (21) we obtain the general 
form of the linearized switching controller 
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The value of iΠ  does not depend on which limit is 
taken in the right-hand side of (24). The variation of 
the horizon due to a variation of state at the time t is 
obtained in a similar way 
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If )(txδ  is known at [,] 11 iiiit δττδττ ++∈ −− , for 
some i, mi ≤≤1 , the correction iδτ  can be 
computed in another way. Define the continuous 

nn×  matrix solution of the equation 
),()(/),( sttAtst Φ=∂Φ∂ , Iss =Φ ),( , for every t,s 

in ],0[ T . The equality =iτδ )(),( txtii δτΦΛ ±  is 
then equivalent to (24), where −Λi  is taken for 

it τ<  and +Λi  for it τ> . The decision about the 
value of the correction iτδ  should be taken as late as 
possible. This critical, last moment t fulfils =− it τ  

=ΦΛ ± )(),( txtii δτ )()( txtWi δΠ . 

4. BASIC REPETITIVE SCHEME 

The overall repetitive computational scheme has two 
levels. On the lower level the linearized controller is 
applied, combined with reduced optimization. In 
each time step it additionally calculates two 
quantities for the remaining part of the control time 

interval. These are the norm of the projection |||| Uφ  
in the control space, see (7), and the expected 
 value of the auxiliary cost functional 

))(())((2
1 ff xTxxTx −− T . When both of them 

exceed some predetermined thresholds, the upper 
level algorithm is activated. On the upper level, the 
MSE method (Szymkat, et al., 2003) is adopted. This 
dynamic optimization algorithm in the variant 
applicable here uses switching times as decision 
variables. It automatically adjusts the control 
structure by generating and reducing switchings. The 
upper level algorithm is continued until the 
projection norm decreases below another threshold. 
If the auxiliary cost is not below its threshold value at 
that time, the MSE algorithm has to be reinitialized. 
After a successful completion of the upper level 
computations, the linearized controller is recalculated 
and the lower level algorithm restarted. The 
distinctive feature of this adaptive scheme is that the 
control structure is adapted in the course of the 
control process. This distinguishes the approach 
described here from the repeated correction method 
of (Pesch, 1989a, b). 

Recall that the derivative of the performance index 
with respect to a switching time iτ  is equal to 
(Szymkat, et al., 2003) 

 )()(2 ii uS
i

ττφτ =∇ .                  (25) 

The repetitive control scheme consists of the 
following steps.  

10 Set 0:0 =t . 

20 Find optimal solution using MSE started with 
current control approximation, i.e. determine horizon 
T, reference control u and switching times iτ , 

mi ,...,1= ; calculate matrix V, and vectors iΠ  for all 
switching times. 

30 Choose time step 0tTt −≤∆  (update interval), 
execute control u in ],[ 00 ttt ∆+ , and substitute 

ttt ∆+= 00 : . 

40 Determine state deviation )( 0tx∆ . Calculate T∆  

and )()( 0
1

01 txtVii ∆Π=∆ −τ  for all 0ti >τ . Set 
corrected values iii τττ ∆+=: , TTT ∆+=:  and thus 
determine new control u. 

50 Update initial state. Compute the norm of Uφ  in 
control space (7), and the expected value of the  
auxiliary cost functional ))(())((2

1 ff xTxxTx −− T . 
If thresholds for both are exceeded, return to 20. 
Otherwise go to 60. 

60 If 0)()( 00 <tutφ , i.e., the derivative (25) would 
be negative, add a control switching at 0t  and 
perform reduced (fixed structure) optimization. Stop 
when a switching time hits the boundary of the 
admissible set or the gradient norm termination 
conditions are met. Return to 30.  



      

The introduction of an additional switching time at 
0t  (step 60) does not initially change the control, but 

creates the possibility of improving the value of 
performance index by moving this switching time to 
the right. For a more detailed treatment of MSE 
including control switching generations and re-
ductions, see (Szymkat, et al., 2003). The restraining 
of optimization in step 60 to fixed structure (with the 
additional initial switching) yields relatively good 
results at low computational cost. 

The area of application of the algorithm can be 
extended to cases where conditions (23) are not 
fulfilled in ],[ 0 Tt  (step 40). Denote =0i  

}:min{ 0ti i >τ . For s increasing from 0 to 1, 
successively remove every switching for which the 
respective value of =′ )(siτ ii s ττ ∆+ , mii ≤≤0 , 

TsTsT ∆+=′ )(  hits the boundary of the admissible 
set. Every time the constraint 0)( tsi >′τ  is hit, the 
control initial value )( 0tu  changes its sign. 

5. EXAMPLE 

We show the application of the repetitive optimizing 
scheme to the well-known benchmark problem of 
steering a pendulum hinged on a cart, which is a 
strongly nonlinear fourth order system. Denote the 
cart position by 1x , its velocity by 3x , the angle 
between the upward direction and the pendulum by 

2x , and the angular velocity of the pendulum by 4x . 
Put =x ),...,(col 41 xx , ),...,(col 41 fff = , 2sin xs = , 

2cos xc = , 22sin xS = , 22cos xC = , 310tanh x=θ , 

sxlkukxkw 2
432311 −−+= θ , 4542 xkskw += , =D  

1)1( −− ec . Then  

31 ),( xuxf = ,     42 ),( xuxf =  

)(),( 213 clwwDuxf += , )(),( 214 wcawDuxf +=  

with ,0785.11 −=k  ,6046.62 =k  ,98794.03 =k   
,432.224 =k  ,057389.05 −=k  ,043715.0=l  =e  

,099961.0  2866.2=a . 

Consider the optimization problem of section 2 with 
)0,0,π,0col(0 =x  and open-loop unstable target state 

0=fx . Assume 6105 −⋅=ε . By (8), the optimal 
control satisfies =)(tu )(sgn tφ  where =φ  

)( 432 ψψ caDk + . The adjoint equation has the form 

ψψ TA−=&  where A defined in (11) has the following 
nonzero elements 

12413 == AA ,   

)( 3454
2
432 SfasxkCkcxlDA −−+−=  

  ))1(10( 2
3133 θ−−= kkDA  

  )2( 5434 cksxlDA +−=  

  )( 441
22

442 SefckswacxeDA −+−−=   

  3343 AacA = ,  )( 4544 SalxkDA −= .  

The performance of the repetitive control scheme is 
evaluated in a series of simulation experiments, with 
modeling of time discretization of control (with 
constant hold intervals), and stochastic state 
disturbances. The length of the update interval in step 
30 of the algorithm is constant, equal to 1.0 . 
Gaussian state disturbances with zero mean  
generated by the MATLAB expression 
p*[4,2,4,2].*randn(1,4) are added to the 
current state at every time moment of update. Typical 
trajectories and controls are shown in Figures 1 and 
2. For 009.0≤p  the periods of effective 
stabilization are long (Fig. 1 shows the results for 

009.0=p ), and for greater p, the probability of 
failure rapidly increases (see Fig. 2 where 01.0=p ). 

Observe that the process of Fig. 1 can be divided into 
two stages: swinging the pendulum up, and 
stabilizing it in the upper position. Although the use 
of bang-bang controls is fully justified in the first 
stage and guarantees a close to minimum time 
transition to the neighborhood of the unstable upper 
position, it may seem purposeful to seek a more 
relaxed control behavior in the stabilization stage, 
resulting in smaller oscillations. This will be realized 
by adding an integral of squared control to the 
auxiliary cost functional, with a weight factor 
growing as the distance to the target state decreases. 
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Fig. 1. Example of effective stabilization. 
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Fig. 2. Example of failure. 



      

In most analyzed simulation runs and real-time 
experiments the above proposed control scheme 
ensures stabilization of the system in a vicinity of the 
open-loop unstable equilibrium. However, in some 
cases we observe large oscillations that cannot be 
solely explained by the disturbances. A more detailed 
analysis leads to the disclosure of a “trap 
phenomenon”. It consists in the failure of the MSE 
algorithm employed in step 20 to properly identify 
the true minimizer of the auxiliary cost functional, 
due to the presence of a competing solution with a 
low value of the criterion for the given horizon T. 
Independently of control, this solution departs from 
the vicinity of target state shortly after T. In order to 
avoid such candidate solutions in the course of  
monotonous MSE search, a “tail term” in the form of 
an integral over an additional interval ],[ 1TTT +  will 
be introduced. 

To give some hints how to handle the trap 
phenomenon, consider the situation when a new 
starting point for the MSE algorithm has to be 
generated. This occurs, e.g., after a step with the 
optimal horizon smaller than the update interval. The 
proposed new value of the horizon has to be 
sufficiently large, to avoid local minima at which the 
target is missed. An appropriate increase of the 
penalty coefficient also proves helpful. However, 
such measures are problem specific, and not always 
efficient. A more general solution is suggested 
below.  

6. ROBUSTIFIED REPETITIVE SCHEME 

The auxiliary optimal control problem consists now 
in the minimization of the following criterion 
functional on the trajectories of (1)  
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The decision variables, that is, the control u and  
horizon T  are subject to constraints: 0tT ≥ , 

 1|)(| ≤tu  for Tt ≤ ,   0)( =tu  for Tt > .    (27) 

The constant 1T  is nonnegative and ρ  is positive. 
The weight factor )( 0xα  monotonously decreases as 

0x  departs from the target state, starting from a 

positive value. For |||| 0
fxx −  greater than a certain 

threshold value, it is identically zero. Such a 
construction guarantees appropriate regularity of the 
structure evolution for the transition from the point-
to-point to the stabilizing feedback type control. The 
hamiltonian for the basic optimal control problem is 
as follows 

 −= ))(),(()( tutxftH Tψ  
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where 0)( =tTσ  for Tt ≤ , and 1)( =tTσ  for .Tt >  

The adjoint variable ψ  satisfies the adjoint equation 

 )(),( f
Tx xxuxf −+−= σρψψ&         (29) 

with a terminal condition 0)( 1 =+TTψ  and a jump 

))(()()( fxTxTT −+= +− ρψψ . 

If 0)( 0 =xα , the extremal control, i.e., the control 
that maximizes the hamiltonian (28) subject to (27) is 
given by 

 Tttxfttu ≤= )),(()(sgn()( 1Tψ .       (30) 

If 0)( 0 >xα , the extremal control satisfies 

 Tttxfttu ≤= − )),(()((sat)( 11 Tψα .     (31) 

The sat function is defined by  
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The idea of the robustified repetitive scheme of 
section 4 remains generally unchanged with the 
following modifications. In step 20, each time the 
MSE procedure is recalled the value of )( 0xα  is 
updated. If the current value is zero the rest of the 
algorithm is executed without any essential change 
for bang-bang type controls. If )( 0xα  is nonzero the 
control is continuous for Tt < , and may have both 
boundary and interior (non-saturated) arcs. Its first 
derivative may be discontinuous only at the ends of 
the boundary arcs. We assume that approximations of 
optimal control also have these properties. Let 

Tt N =<<<= σσσ K100  be end points of 
subsequent control approximation arcs. Some iσ  
coincide with kτ  dividing boundary and interior arcs. 
Let in every interior arc  

 ),,()( 1 iii twptu σσ −= T                 (33)  

where ip  is a vector of parameters and w, a vector of  
Hermite cubic polynomials 

 =− ),,( 11 iitw σσ =− ),,( 13 iitw σσ  
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Thus 11)( ii pu =−σ , 21 )( ii pu =+−σ& , 3)( ii pu =σ ,   
=−)( iu σ& 4ip . To ensure continuity at division points 

and smoothness between neighboring interior arcs, 
some parameters ikp  are fixed or made identical.  

Let Σ  denote the performance index as a function of 
the parameters, division points and horizon. Its 
derivative w.r.t. ikp  reads  

 ∫
Ω

∇∇−=Σ∇
ik

ikik
tuuxH pup d),,(ψ          (34) 



      

where the derivatives of u are determined by (33), 
and ikΩ  is the union of ],[ 1 ii σσ −  and, possibly, one 
of its neighboring interior intervals. The derivative 
w.r.t. Ni σσ ≠ ,  being the right-hand end of an 
interior interval is given by 

Σ∇+−Σ∇−−Σ∇−−=Σ∇ +−
443
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where Σ∇−
4ip  and Σ∇+

4ip  are computed according to 

(34), but with ikΩ  equal to ],[ 1 ii σσ −  and ],[ 1+ii σσ , 
respectively. For the left-hand end points we have 

 =Σ∇
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Σ∇+−Σ∇−−Σ∇+− +−
+++ 2,12,11,1
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If iσ  is an end point of a boundary arc, the terms 
with vanishing control derivatives are dropped. The 
derivative w.r.t. horizon 
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For step 40 of the scheme in the case of 0)( 0 ≠xα  
we consider controls parameterized with division 
points and vectors ip  (33) for segments within the 
interior arcs. A variational approach analogous to 
that described in section 3 can be employed to get 
linearized parametric controllers.  

An example of solution optimal according to the 
performance index (26) is given in Fig. 3. For 
comparison, the minimum time solution for the same 
initial condition is shown in Fig. 4. 

7. CONCLUSIONS 

The construction of optimal closed-loop controller 
for systems with non-linear state equations is a com-
plex computational task. The adaptive optimizing 
controller is a practical solution, which can be 
applied in real time, in a vicinity of a reference 
trajectory computed beforehand. A combination with 
repetitive optimization using the MSE method 
enlarges the area of application, at the cost of more 
on-line computations. An important observation is 
that the implementation of reduced optimization 
largely decreases the computational cost of the 
algorithm, with insignificant deterioration of its 
performance. The inclusion of the horizon into the 
optimization process improves the overall efficiency 
of the repetitive control scheme. The use of relaxed 
minimum time criterion (26) forces the 
computational procedure to reject certain “unsafe” 
controls and assures required robustness by restrain-
ing  the control amplitude in the neighborhood of the 
target state. 
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Fig. 3. Robustified optimal solution. 
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Fig. 4. Minimum time solution. 
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