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Abstract: This paper provides a framework for control design and simulation
of a closed-loop system with partial input/output data of a plant. Given the
input/output crosscorrelation and output autocorrelation data of an open loop
dynamic system, a simulation model implemented in fixed-point digital devices
which matches these data is obtained using q-Markov Covariance Equivalent
Realizations. These results allow the design of digital simulations with no error
within the specified set of crosscorrelation and autocorrelation data. When a linear
approximation of the plant is assumed, an LQG controller can be presented solely
in terms of the input/output crosscorrelation data. This is the so-called the Markov
data-based LQG control. With both the simulation model of the plant and the
controller in hand, a closed-loop simulation can be constructed. This is yet another
example showing that significant work can be done with very limited information
of a plant. Copyright c©2005 IFAC.
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1. INTRODUCTION

How much information of a plant do we need
to design an LQG controller and simulate the
closed-loop system? This paper shows that the in-
put/output correlation data from one experiment
will be enough for both identification and control
design. Given a prespecified set of input/output
crosscorrelation and output autocorrelation data
of an open loop dynamic system excited by white
noise signals, this paper produces all linear state
space models which match these data with the
presence of computational error in a fixed-point
simulation environment. For an FDLTI (finite-
dimensional linear time invariant) system, these
input/output crosscorrelation and output auto-
correlation data refer to Markov parameters and
Covariance parameters respectively. Those meth-
ods developed in Yousuff et al. (1985) Skelton and

Anderson (1986) and reference therein are called
q-Markov COvariance Equivalent Realization (q-
Markov COVERs, or QMC), and these methods
guarantee stability and match the first q cross-
correlation and the first q output autocorrelation
data. Especially such methods can guarantee to
preserve the nonminimum-phase properties of the
plant.

The QMC theory was originally developed for
model reduction Yousuff et al. (1985), while the
realization of all QMC from the input/output
data of an unknown system is useful for identi-
fication Liu and Skelton (1992) Skelton and Shi
(1996) Enqvist (2002). Unlike identification meth-
ods based on least squares, the q-Markov COVER
gives a linear model that matches exactly the
first q Markov parameters and the first q output
covariance parameters Yousuff et al. (1985)Liu



and Skelton (1992) Skelton and Shi (1996). As the
Markov parameters and covariance parameters
characterize respectively the transient and steady-
state properties of a linear system, it is reasonable
to use a QMC to approximate the real system.

However, a digital simulation of a QMC would not
yield the correct values of the response data since
the covariance parameters and Markov parame-
ters will be distorted by the roundoff errors. Most
simulation procedures available in the literature
implicitly ignore the fact that the implementation
of digital model imposes some fundamental limita-
tions on the performance of the closed loop perfor-
mance. In this scenario, a careful analysis of finite
precision effects will be certainly required. In this
paper we generalize the existing QMC theory to
accommodate the finite wordlength effect. The so-
called finite wordlength QMC (FWL-QMC) can
match the Markov and Covariance parameters of
the original model as if there are no roundoff er-
rors. This consideration is indispensable in digital
simulations using QMC theory.

While the model-based control theory promises
good performance when the model is accurate,
it can deliver much worse performance and even
instability when the model upon which the con-
troller based is not accurate. An alternative to
model-based control is data-based control. Al-
though most control methods (including LQG,
H∞, and MPC) are model-based, a complete
state space model might be more than enough
information for control design. It is shown that
a finite horizon LQG control algorithm can be
presented in terms of a set of Markov parameters
Furuta et al. (1995) Shi and Skelton (2000). Fur-
thermore, when a real plant is assumed to be a
linear system, the input/output crosscorrelation
data coincides with the Markov parameters. In
this paper, the input/output crosscorrelation data
is employed in deducing the LQG controller. Fig-
ure 1 illustrates the data-based closed-loop simu-
lation.
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Fig. 1. Data-based closed-loop simulation

The outline of this paper is as follows: first,
we show how to obtain the data, then a finite
precision simulation model and an LQG controller

are constructed based on the given data, followed
by the closed-loop simulation framework.

2. OBTAINING THE DATA

Consider any nonlinear system whose inputs cho-
sen for identification are white noise u ∈ IRnu

and corrupted by unknown zeros mean white
noise w(k) ∈ IRnu , k = 0, 1, 2, . . . (with known
covariance W ). The outputs are denoted by the
sequence y(k) ∈ IRny , k = 0, 1, 2, . . .; v(k) ∈ IRny

is unknown zero mean, white noise with covari-
ance V , corrupting the system measurement. It is
assumed that u(k), w(k), v(k) and the initial state
of the plant are uncorrelated and the covariance of
u(k) is U = I. The input and output of the plant
are ū(k) and ȳ(k), respectively. Hence, ū = u+w,
ȳ = y + v.

Denote the output autocorrelation parameters by
Ri, and the input/output crosscorrelation para-
meters (normalized by U) by Hi, i = 0, 1, 2, ..., q−
1.

Ri , lim
N→∞

1
N

N−1∑

k=0

y(k + i)yT (k). (1)

Hi , lim
N→∞

1
N

N−1∑

k=0

y(k + i)uT (k). (2)

For a stochastic linear system, the output auto-
correlation parameters Ri and the input/output
crosscorrelation parameters Hi coincide with the
covariance parameters and Markov parameters re-
spectively Skelton and Shi (1996).

Define two Toeplitz matrices from the parameters
(1) and (2):

Rq ,




R0 RT
1 . . . RT

q−1

R1 R0 . . . RT
q−2

...
...

. . .
...

Rq−1 Rq−2 . . . R0


 (3)

Hq ,




H0 0 . . . 0
H1 H0 . . . 0
...

...
. . .

...
Hq−1 Hq−2 . . . H0


 (4)

And define the block diagonal matrices for later
use:

Uq , Iq ⊗ U, Wq , Iq ⊗W, Vq , Iq ⊗ V

where Rq,Vq ∈ IRnyq×nyq; Hq ∈ IRnyq×nuq;
Uq,Wq ∈ IRnuq×nuq. In section 3, the data (1)
(2) are utilized for identification of the plant. In
section 4, the data (2) provides information for
control design.



3. SIMULATION MODEL OF THE PLANT

3.1 The roundoff noise model and scaling condition

The conventional q-Markov COVER is a linear
model in the form as follows

x̄(k + 1) = Arx̄(k) + Brū(k) (5)
ȳ(k) = Crx̄(k) + Drū(k)

where x̄(k) ∈ IRnr . The existence condition and
parameterizations of (5) can be found in Skelton
and Shi (1996) Liu and Skelton (1992). In digi-
tal implementation, however, the effect of finite
wordlength introduces defection which is realiza-
tion dependent. When take the roundoff error into
account, the simulation model becomes

x̂(k + 1) = Ar(x̂(k) + ex(k)) + Br(ū(k) + eu(k))
ŷ(k) = Cr(x̂(k) + ex(k)) + Dr(ū(k) + eu(k)) + ey(k)

(6)

where x̂k ∈ IRnr . ex(k) is the quantization error
of the state signal, eu(k) is input error due to
a possible A/D conversion and ey(k) is caused
by roundoff at the outputs. It is known that
neither the quantization error of the input eu nor
that of the output ey depends on the realization,
while the effect of the state roundoff error on
the output is realization dependent Mullis and
Roberts (1976). (6) is the simulation model of
desirable dimension. It is our intention to find
(Ar, Br, Cr, Dr) such that up to q Markov and
covariance parameters generated by (6) match
those given data (1),(2). q is free to choose.

It has been shown that when overflow is rare, un-
der sufficient excitation conditions, the fixed point
computational error ex, eu and ey can be modeled
as zero-mean, uniform white noise sequences in-
dependent of other signals in the system. Since w
and eu, v and ey are independent, introducing eu

and ey does not add any difficulties. Thus, we shall
not differentiate between w and eu, nor v and ey.
In the sequel, we should focus on the roundoff er-
ror of the state signals. Each white noise sequence
ex, eu and ey has a diagonal covariance matrix Ej ,
where j = x, u, y.

[Ej ]i,i := ρji ρji =
1
12

2−2βji (7)

where βji is the fractional part of the wordlength
(number of bits) used to store the ith variable
in a digital device. To simplify the analysis, we
assume that uniform wordlength are used among
the states, that is, Ex = ρ2

xI, Eu = ρ2
uI and

Ey = ρ2
yI . Define Eq , Iq ⊗ Ex, Wq , Iq ⊗ Eu,

Vq , Iq ⊗ Ey for later use.

Since the computational errors are realization
dependent, we shall use the variance oriented l2-
norm scaling constraint on the component of the

transformed covariance matrix, that is, to impose
the additional scaling constraint Liu et al. (1992).

[X̂](i,i) ≤ 1, i = 1, . . . , n (8)

A simplified scaling condition that is more tractable
than (8) is

X̂ = I (9)
which can be obtained from (8) by relaxation. It
is clear that all inequalities in (8) hold whenever
(9) holds. Scaling condition (9) is known as or-
thogonal filter structure. X̂ is the state covariance
matrix of computational model (6) and satisfies
the Lyapunov equation

X̂ = ArX̂AT
r + Br(I + Eu)BT

r + ArExAT
r (10)

3.2 Parameterizing the simulation model

When the finite precision effects is considered,
we need to answer the following question: ”Does
there exist an FDLTI in the form of (6) with finite
wordlength (FWL) quantization errors which can
match data {Hi, Ri|i = 0, 1, . . . , q−1}? ” If so, we
shall call such a state space model FWL-QMC.

Define Dq , Rq − Hq(Uq + Wq)HT
q − Vq. Dq is

referred to as data matrix since it contains all the
known data. Define S ∈ IRnyq×nyq as the lower
shift matrix with ones on the first subdiagonal
and zeros elsewhere, i.e. {S}k,l = δk−l−1. S will
play an essential role in deducing FWL-QMC.

Assume there exists an FWL-QMC (6) which
matches the data {Hi, Ri|i = 0, 1, . . . , q − 1}.
Denote û(k) = ū(k)+ eu(k). The output sequence
of (6) is given by

ŷq(k) = Oqx̂(k) + Ĥqûq(k) +Nqexq(k) + eyq(k)
(11)

where

Oq ,




Cr

CrAr

...
CrA

q−1
r




Ĥq ,




Dr 0 . . . 0
CrBr Dr . . . 0

...
...

. . .
...

CrA
q−2
r Br . . . CrBr Dr




Nq ,




Cr 0 . . . 0
CrAr Cr . . . 0

...
...

. . .
...

CrA
q−1
r . . . CrAr Cr




ŷT
q (k) ,

[
ŷT (k) ŷT (k + 1) . . . ŷT (k + q − 1)

]

ûT
q (k) ,

[
ûT (k) ûT (k + 1) . . . ûT (k + q − 1)

]

eT
xq(k) ,

[
eT
x (k) eT

x (k + 1) . . . eT
x (k + q − 1)

]

eT
yq(k) ,

[
eT
y (k) eT

y (k + 1) . . . eT
y (k + q − 1)

]

where Oq ∈ IRnyq×nr , Ĥq ∈ IRnyq×nuq, Nq ∈
IRnyq×nrq.



To match the data {Hi, Ri|i = 0, 1, . . . , q − 1},
we need Ĥq = Hq. And the Toeplitz matrices
(3) and (4) satisfy the following equation which is
generated by taking the covariance of the vector
ŷq(k) in (11)

Rq = OqX̂OT
q +Hq(Uq +Wq)HT

q +NqEqN T
q +Vq

(12)
where X̂ solves the Lyapunov equation (10) and
satisfies the scaling condition (9). Any linear sys-
tem in the form of (6) that can generate both
Markov parameters and covariance parameters
{Hi, Ri|i = 0, 1, . . . , q − 1} must satisfy (12).

Note that the data Hi and Ri do not depend
upon the choice of state space realization. Rewrite
the scaling condition (9), (10) and the covariance
equation (12)

Ar(I + ρ2
xI)AT

r + Br(I + ρ2
uI)BT

r = I (13)

Dq = OqOT
q + ρ2

xNqN T
q (14)

We shall find the parameters {Ar, Br, Cr, Dr}
satisfying (13) and (14).

Theorem 1. Given the data {Hi, Ri|i = 0, 1, . . . , q−
1} generated by a system with unit variance white
noise excitation. Let the integer q > 0 be speci-
fied. Suppose Dq−

∑q−1
i=1

ρ2
x

(1+ρ2
x)i S

inyDqS
iny

T ≥ 0,
where Dq and S are defined as above. Then all
stable linear models {Ar, Br, Cr, Dr} that match
the given data are parameterized by

[
Dr Cr

Br Ar

]
=

[
Iny 0
0 O+

q−1

]
[Kq Oq] +

[
0

VbÛV T
d Λρx

]

where OqOT
q = D is the minimal rank factoriza-

tion of D, and

D , 1
(1 + ρ2

x)

[
Dq −

q−1∑

i=1

ρ2
x

(1 + ρ2
x)i

SinyDqS
iny

T

]

Oq−1 =
[
Iny(q−1) 0

]Oq

Kq−1 =
[
0 Iny(q−1)

]Hq

Jq−1 =
[
0 Iny(q−1)

]Oq

Û is an arbitrary matrix of proper dimension
satisfying Û ÛT = I.

Λρx ,
[

(1 + ρ2
u)−

1
2 I 0

0 (1 + ρ2
x)−

1
2 I

]

And Vb, Vd are given by the following SVD

Oq−1 = [Ua Ub]
[

Σa 0
0 0

] [
V T

a

V T
b

]

[
(1 + ρ2

u)
1
2Kq−1 (1 + ρ2

x)
1
2Jq−1

]

= [Ua Ub]
[

Σa 0
0 0

] [
V T

c

V T
d

]

Proof 1. See Li and Skelton (2004).

4. DATA-BASED LQG CONTROL DESIGN

Traditionally the LQG control design is based on
a state space model, or a complete input/output
description of an LTI system. It is shown in Shi
and Skelton (2000) that the Markov parameters of
a linear system are all the information needed to
implement LQG control algorithms. In practice,
the plant model is usually unknown. Hence, the
Markov parameters are not available. In what
follows we shall use the input/output crosscorrela-
tion data to construct the LQG controller. Notice
that those data reduces to Markov parameters
when the plant model is linear. By doing so, we as-
sume the unknown plant can be approximated by
a linear system generating the same input/output
crosscorrelation data. Next we shall briefly review
the model based LQG control. Then it is shown all
the control coefficients can be expressed in term
of Markov parameters.

4.1 Model based LQG control

Consider a linear discrete-time system{
x(k + 1) = Ax(k) + B(u(k) + w(k))
y(k) = Cx(k) + v(k)

(15)

where x(k), u(k), y(k) have dimension n, nu, ny

respectively. w(k), v(k) and the initial state x(0)
are zero mean, uncorrelated white noises.

The model-based LQG control problem is to find
the functional

uk = f(A,B, C, Q,R, W, V, uk−1, yk−1) (16)

such that the quadratic cost

J = E

[
yT

NQyN +
N−1∑

k=0

(yk
T Qyk + uk

T Ruk)

]

(17)
is minimized subject to system model (15) and
known characteristics of the initial conditions and
the disturbances (x0, wk, vk), where Q and R are
positive definite weighting matrices.

The solution of the model-based LQG control
problem is well known. The optimal input is given
by

uk = −(R + BT Xk+1B)−1BT Xk+1Ax̂k

k = 0, 1, 2, . . . , N − 1

where Xk+1 is the solution of the difference Ric-
cati equation

Xk = CT QC + AT Xk+1A−AT Xk+1B (18)

· (R + BT Xk+1B)−1BT Xk+1A.

XN = CT QC

The optimal state estimation, x̂, can be obtained
from

x̂k+1 = Ax̂k+Buk+Lk(yk−Cx̂k), x̂0 = 0 (19)



where the estimator gain Lk is given by

Lk = AYkCT (V + CYkCT )−1

where Yk is the solution of the following difference
Riccati equation

Yk+1 =BWBT + AYkAT −AYkCT

· (V + CYkCT )−1CYkAT . (20)

It is assumed that the initial conditions of the
plant lie in the range space of the disturbance
matrix B. That is, x0 = Bŵ0 for some ŵ0 with
known covariance W0 > 0. Thus

Y0 = E(x0 − x̂0)(x0 − x̂0)T = Ex0x0
T = BW0B

T

(21)

4.2 Closed-form solutions to the Riccati equations

Next we seek to express the closed-form solution
of the Riccati equations in terms of Markov para-
meters.

Lemma 1. The difference Riccati equation (18) is
equivalent to the following closed-loop expression

Xk =CT
k (Q−1

k + SkR−1
k ST

k )−1Ck (22)
k = 2, 3, . . . , N

where

Ck ,




C
CA
...

CAN−k




Sk ,




0
CB 0

CAB CB
. . .

...
...

. . . . . .
CAN−k−1B CAN−k−2B . . . CB 0




SN = 0

Qk = diag(Q,Q, . . . , Q); Rk = diag(R,R, . . . , R)

Qk and Rk contain N − k + 1 diagonal blocks
respectively.

Proof 2. This lemma can be proved using back-
ward induction and the matrix inversion lemma.

Similarly, we can express the solution to the
estimation Riccati equation in terms of Markov
parameters using a dual form of 22.

4.3 Data-based optimal estimation

Besides the solutions to Riccati equations, the
LQG controller requires the optimal state estima-
tion x̂k. Next an algorithm is given to compute
the controller state recursively in terms of the

Markov data sequences and the past observations.
Note that in the model-based control, x̂k is the
optimal state estimation as well as the controller
state vector. In our data-based control, we define
the controller state vector as

x̄N−k+1
k , Ckx̂k (23)

where x̂k is the optimal estimation of the plant
states xk, the superscript N − k + 1 indicates
that, x̄N−k+1

k has dimension of (N − k + 1)ny,
and the subscript k is the time index. It should be
pointed out that x̂k is computed using the state
space model. In the following we will show that the
data-based controller state vector x̄N−k+1

k can be
computed using only the Markov parameters.

Theorem 2. The data-based controller state equa-
tion is given in terms of the Markov parameters
sequences as follows:

x̄N−k+1
k = Akx̄N−k+2

k + Bkuk−1 + Fkyk−1 (24)

x̄N+1
0 = 0

where Ak, Bk and Fk are time varying gain
matrices as follows

Ak = [−Fk, I(N−k+1)ny
]

Fk = HkPkNT
k (V + NkPkNT

k )−1

Bk =




H1

H2

...
HN−k+1




Hk =




H2 H3 . . . Hk+1

H3 H4 . . . Hk+2

...
...

. . .
...

HN−k+2 HN−k+1 . . . HN+1




Pk = (W−1
k + TT

k V−1
k Tk)−1

Nk = [H1,H2 . . . Hk]

Tk =




0 H0 H2 . . . Hk−1

0 H1 . . . Hk−2

. . . . . .
...

0
. . . H1

0




Wk = diag{W,W, . . . ,W,W0}
Vk = diag{V, V, . . . , V }

where Wk and Vk contain k diagonal blocks
respectively.

Proof 3. See Shi and Skelton (2000).

Next the control gain is presented in terms of the
Markov parameters.

Theorem 3. The optimal data-based LQG control
law associated with the cost function (17) is given
by



uk = Gkx̄N−k+1
k (25)

where Gk is referred to as the data-based control
gain, x̄N−k+1

k is the data-based controller state
vector derived in Theorem 2, and

Gk = −(R + BT
k+1(Q

−1
k+1 + Sk+1R−1

k+1)
−1Bk+1)−1

·BT
k+1(Q

−1
k+1 + Sk+1R−1

k+1S
T
k+1)

−1[0ny , I(N−k)ny
]

Bk+1 =




H1

H2

...
HN−k




Sk+1 =




0
H1 0

H2 H1
. . .

...
...

. . . . . .
HN−k−1 HN−k−2 . . . H1 0




Qk+1 = diag{Q,Q, . . . , Q}
Rk+1 = diag{R, R, . . . , R}

and Qk+1 and Rk+1 contain N−k diagonal blocks
respectively.

Proof 4. See Shi and Skelton (2000).

5. DATA-BASED CLOSED-LOOP
SIMULATION SYNTHESIS

Theorem 2 and 3 provide the data-based LQG
control design algorithm. Combining them leads
to a recursive form as follows:

x̄N−k+1
k = Akx̄N−k+2

k + Bkuk−1 + Fkyk−1

x̄N+1
0 = 0

uk = Gkx̄N−k+1
k

where all the coefficient matrices can be expressed
in terms of the given data. Meanwhile, an explicit
simulation model of the plant is given in Theorem
1. Thus, a closed-loop simulation as in figure 1
can be constructed. Notice that the dimension of
the simulation model depends on the number of
data it has to match. A simulation model with
dimension q · ny can match the first q crosscor-
relation and autocorrelation data. In data-based
LQG control with horizon N , the first N cross-
correlation data is needed to obtain the controller
parameters.

6. CONCLUSION

This paper integrates the q-Markov COVari-
ance Equivalent Realization (q-Markov COVER)
and Markov data-based LQG control. The q-
Markov COVER gives an identification model
while Markov data-based LQG control generates

an LQG controller. Thus, a closed-loop system can
be constructed. We extended this integration to
closed-loop simulation where the roundoff error in
digital simulations is accommodated with a finite
wordlength q-Markov COVariance Equivalent Re-
alization (FWL-QMC). Also we extended this in-
tegration to unknown dynamic systems where the
Markov and Covariance parameters are related
to the input/output crosscorrelation and output
autocorrelation data of a plant with white noise
excitations. Hence, a framework of data-based
closed-loop simulation is developed with much less
information than the plant model.
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