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Abstract: The bifurcation of limit cycles in single-input single-output control
systems with saturation is considered. Under some non-degeneracy conditions,
a theorem characterizing such bifurcation is stated for the cases of dimension two
and three. In terms of the deviation from the critical value of the bifurcation
parameter, expressions in form of power series for the period, amplitude and the
characteristic multipliers of the bifurcating limit cycle are obtained. These results
are similar to the Hopf bifurcation theorem for differentiable systems, but they
show some differences coming from the non-smooth character of the saturation
characteristic. Copyright c©2005 IFAC.
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1. INTRODUCTION

Equilibrium points correspond with the simplest
solutions of a dynamical system. The study of
their location and their stability character is one
of the first tasks in the analysis of a given nonlin-
ear system, since the different equilibria and their
attraction basins organize partially or completely
the phase space. Next, periodic orbits constitute
another class of relevant solutions to be consid-
ered. When a periodic orbit is isolated, that is,
there exists some neighborhood of it where there
are no other periodic orbits, it is said that it is
a limit cycle. Obviously, the knowledge of limit
cycles and their stability can be regarded as the
second main step in nonlinear analysis.

Apart from approximate methods like the describ-
ing function method, few techniques are avail-
able in order to show the existence of limit cy-
cles and their stability for non-smooth systems.
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Rigorous mathematical proofs are hard to ob-
tain and cumbersome; see for instance (Moreno
and Suárez, 2004). In the case of piecewise linear
systems, the more popular they are the more
necessary is to achieve sound theoretical results
about their possible limit cycles. Trying to avoid
this lack of results, here a new methodology for
studying limit cycles is proposed, and explicit re-
sults are given for low dimensional piecewise linear
systems. Some related results and more details of
the followed approach can be seen in (Freire et
al., 1999), (Freire et al., 2005) and (Carmona et
al., 2005).

It will be considered the following system in Rn,

ẋ(t) = Ax(t) + bu(t), (1)

subject to a nonlinear feedback u = −ϕ(y), where
ϕ : R → R is an odd piecewise linear function,
x(t) = (x1(t), . . . , xn(t))T , A is an n×n constant
real matrix, b, c ∈ Rn, and y(t) ∈ R is the output
variable as follows

y(t) = cT x(t). (2)



In the common case of a characteristic with only
three linear pieces, the nonlinearities are of the
form

ϕ(y) =





k2y − (k1 − k2)v, if y ≤ −v,
k1y, if − v < y < v,
k2y + (k1 − k2)v, if v ≤ y,

(3)
where k1 6= k2 and v > 0. In fact, these piecewise
linear characteristics can be normalized as follows.
Take x = vx, A = A−k2bcT and b = (k1−k2)b.
Then, the control system ẋ = Ax − ϕ(cT x)b
with ϕ(y) given by (3) can be transformed into
ẋ = Ax− ϕ(cT x)b with

ϕ(y) =




−1, if y ≤ −1,

y, if −1 < y < 1,
1, if 1 ≤ y.

(4)

From now on, only normalized saturation non-
linearities given by (4) will be considered. Thus,
the control system (1)-(2) is a dynamical system
defined by a symmetric piecewise continuous vec-
tor field with three linear zones and two parallel
frontiers. Clearly, it is always possible to suppose
that the frontiers are the planes Σ1 = {x ∈ Rn :
x1 = 1} and Σ−1 = {x ∈ Rn : x1 = −1}. The
regions of Rn where x1 < −1, |x1| ≤ 1 and x1 > 1,
respectively hold, will be denoted by L (left), C
(central) and R (right) zones.

Therefore, the system object of analysis can be
expressed as follows

ẋ =ALx− b, if x1 < −1,
ẋ =ACx, if |x1| ≤ 1,
ẋ =ALx + b, if x1 > 1,

(5)

where the continuity and symmetry of the vector
field involved have been taken into account; in
particular, the matrices AL and AC can only differ
in their first columns. Note that the origin is
always an equilibrium point.

From Proposition 16 of (Carmona et al., 2002),
under the generic condition of observability, that
is, when the observability matrix

O =




eT
1

eT
1 AC

...
eT
1 An−1

C


 ,

has full rank, system (5) can be written in the
generalized Liénard’s form, namely

ẋ =




a1 −1 0 · · · 0
a2 0 −1 · · · 0
...

...
...

. . .
...

an−1 0 0 · · · −1
an 0 0 · · · 0




x + bϕ̄(x1), (6)

where, with a slight misuse of notation, the same
symbols will be used for coordinates. It should
be remarked that, in order to check the above

observability condition, one can use equivalently
the matrix AL.

For these systems, it will be considered the case
where for some critical values of parameters the
matrix corresponding to the central zone has a
pair of imaginary eigenvalues ±βi, and there are
no other eigenvalues on the imaginary axis of
the complex plane, so that system (6) has a
linear center contained in the central zone C.
Furthermore, the outermost periodic orbit of the
center will be tangent to both Σ1 and Σ−1. By
varying some parameter, it will be analyzed the
possible bifurcation of a symmetrical limit cycle
from this center (obviously, it should be born from
the outermost periodic orbit of the center).

The passing of the bifurcation parameter by the
critical value implies that a complex pair of eigen-
values of the linear system in the zone C crosses
the imaginary axis of the complex plane. Note the
similarities with the classical Hopf bifurcation sce-
nario. However, the piecewise linear character of
the model makes that the change in the dynamics
is not merely local.

The proposed bifurcation approach to show the
existence of limit cycles has a local character
with respect to the parameters and is based in
the study of the so called closing equations. The
method works very well for low-dimensional sys-
tems and can be generalized, but the complexity
of the computations involved logically grows with
the dimension of the system.

The paper is organized as follows. In Section 2,
the method of closing equations as the main tool
in the analysis is sketched. Next, in Section 3
the bifurcation result for planar systems is given
and the corresponding three-dimensional case is
outlined in Section 4. Some conclusions are offered
at the end of the paper.

2. THE CLOSING EQUATIONS

Assume that system (6) has a symmetrical pe-
riodic orbit, see Figure 1. Let us denote by x0,
x1, x2 and x3 the points where the periodic orbit
intersect Σ1 and Σ−1, and let be τC the time spent
by this orbit from x0 to x1 in zone C, and τL the
time spent by this orbit from x1 to x2 in zone L.

As system (6) is linear in every zone, it is possible
to obtain explicitly its solutions, and to identify
symmetrical periodic orbits of the system living in
the three zones with the solutions of the equations

eACτCx0 − x1 = 0,

eALτLx1 −
∫ τL

0

eAL(τL−s)b ds + x0 = 0,
(7)

where τC and τL are the times spent by the semi-
orbit in each zone, and
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Fig. 1. Sketch of a 3D symmetric periodic orbit
using the three linear zones of system (6).

x0 =




1
x0

2
...

x0
n


 , x1 =




−1
x1

2
...

x1
n


 ,

are two intersection points of the orbit with the
planes Σ1 and Σ−1, respectively (from the symme-
try, there will exist their symmetrical x2 = −x0

and x3 = −x1). The system formed by Eqs.
(7) will be referred as closing equations. The
use of these equations goes back to Andronov
and coworkers (Andronov et al., 1966) and, in
the context of limit cycle bifurcations, it was
firstly exploited in (Kriegsmann, 1987). The last
quoted author studied the rapid bifurcation in the
Wien bridge oscillator, later revisited in (Freire et
al., 1999).

Natural parameters for analyzing the closing
equations are the coefficients of the two involved
characteristic polynomials. It will be assumed that
all these coefficients are constant, excepting the
trace T of the matrix AC , to be considered as the
unique bifurcation parameter of the problem. Un-
der straightforward additional assumptions, there
will appear some critical value, say T = Tc, for
which a linear center exists in the central zone,
bounded by the boundary hyperplanes Σ1 and
Σ−1.

Starting from this critical value and considering
the outermost periodic orbit of the corresponding
center configuration, the closing equations will be
used in order to analyze what happens to such
periodic orbit as T varies, keeping constant the
other parameters. To achieve this goal, first it
will be determined the non-transversal solution
of closing equations (7) that corresponds to the
outermost periodic orbit of the center. This orbit
is tipically associated to the values τL = 0 and
τC = π/β, where β stands for the frequency of
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Fig. 2. (a) Phase plane of the piecewise linear
system for T = 0. The center configuration is
constrained to the middle region. (b) Phase
plane for T > 0 showing a stable limit cycle
lying in the three regions, which comes from
the outermost orbit of the center.

the linear oscillations of the center. The key idea
is, by varying T , to follow the branch of solutions
of the closing equations that emanates from the
above point. The points of this branch will satisfy
τL > 0 and τC < π/β, and are already associated
to actual nonlinear periodic solutions, generically
isolated.

Such kind of path following problem can be solved
numerically, of course, but it is also possible to
parameterize the closing equations solutions ana-
lytically, at least in a local neighborhood of the
starting solution. This can be done by means
of an adequate application of the implicit func-
tion theorem, that previously requires to remove
the singularities imposed by the mentioned non-
transversality.

Thus, for the desired branch that springs from the
aforementioned solution, it is possible to obtain
power series in τL for the remaining variables
of the closing equations. Other technical issue is
to pass from the series in τL to series in the
bifurcation parameter. In order to know about
the stability of the bifurcating limit cycle, it is
useful to estimate the characteristic multipliers
of the limit cycle, that is, the eigenvalues of the
derivative of a Poincaré return map defined in
an adequate section of the phase space. Such
computation is also included in the analysis.
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Fig. 3. Limit cycle amplitude (measured as the
maximum value of |x1|) versus the bifurcation
parameter T , as predicted by Theorem 1,
considering the first three non-null terms in
the series. The depicted case is for d = D = 1,
t = −1. The vertical line stands for the
existence of the center configuration of the
central zone.

The theoretical results obtained by the applica-
tion of this method in dimension two and three ap-
pear in next sections. More details of this method
can be found in (Freire et al., 1999), (Ros, 2003),
(Freire et al., 2005) and (Carmona et al., 2005).

3. THE TWO-DIMENSIONAL CASE

Under the generic condition of observability for
the planar case of (5), every system of the above
form can be written in the Liénard’s form

d

dτ

[
x1

x2

]
=

[
t −1
d 0

] [
x1

x2

]
+

[
T − t
D − d

]
ϕ(x1).

(8)

As a necessary hiphothesis for the existence of a
linear center at the origin, is that the origin be a
topological focus (that is, 4D−T 2 > 0. The most
interesting situation for the scope of this paper is
the one where the origin is the only equilibrium
point and t > 0, which corresponds to an unstable
open loop system and, if the system is desired to
be closed loop stable, the conditions D > 0 and
T < 0 must hold. On the contrary, from the point
of view of design of oscillators, it is required t < 0,
D > 0 and T > 0, see Figure 2.

The following result gives a quantitative descrip-
tion of the generation of a limit cycle when the
value of T passes from negative to positive values.
The phenomenon has been described as a rapid
bifurcation in (Kriegsmann, 1987), and the follow-
ing result has been proved in (Freire et al., 1999)
and generalized in (Ros, 2003) and (Freire et
al., 2005).

Fig. 4. Phase portrait for the system (8) for T =
−1, t = 1, D = 2 and d = 1. For theses
values the limit cycle predicted by Theorem
1 that bifurcated for T = 0 still remains. Note
that the limit cycle is unstable and defines the
basin of attraction of the stable equilibrium
at the origin.

Theorem 1. Assume for system (8) that D > 0,
T 2 < 4D and t 6= 0. For T = 0 the system
undergoes a focus-center-limit cycle bifurcation,
that is, from the focus configuration at the origin,
that exists for Tt > 0, the system has a linear
center restricted to the central zone for T = 0,
that gives places to an hyperbolic limit cycle for
tT < 0 and T sufficiently small, symmetrical
respect the origin and that intersects transversally
Σ1 and Σ−1.

For t < 0, the bifurcating limit cycle appears
for T > 0 and is orbitally asymptotically stable,
while for t > 0, the bifurcating limit cycle appears
for T < 0 and is unstable. The amplitude a
(measured as the maximum in |x1|), the period
P of the periodic oscillation and the logarithm of
the characteristic multiplier ρ of the limit cycle
are analytic functions at 0, in the variable T

1
3 ,

for T > 0 and sufficiently small. Furthermore, the
series in T

1
3 are

a = 1 +
(6π)2/3

8t2/3
T 2/3 +

+
(6π4)1/3(120D − 2t2 − 21d)

960t4/3
T 4/3 +

+
(6π)2/3

12t5/3
T 5/3 + O(T 2),

P =
2π√
D

+
π(d−D)

D
3
2 t

T +

− (6π5)1/3((d−D)2 + t2D)
10D5/2t5/3

T 5/3 + O(T 2),



T>TT<Tc T=Tc c

Fig. 5. The focus-center-limit cycle bifurcation in the case D > 0, γ > 0. The focal plane and the
complementary one-dimensional invariant manifold at the origin are shown, along with the two
parallel planes which separate the three linear regions. In the situation sketched, as deduced from
Theorem 2, the bifurcating limit cycle is of saddle type.

ρ =−2 (6π)1/3
t2/3T 1/3 +

π

15
(
12d + 15− t2

)
T +

+
4 (6π)1/3

3t1/3
T 4/3 + O(T 5/3).

Note that the amplitude behavior versus the bi-
furcation parameter is rather different from the
one in the case of the Hopf bifurcation for smooth
systems, where the amplitude should evolve as
O(T

1
2 ), without having the jump that it is ob-

served here for piecewise linear systems, see Figure
3. Nevertheless, the bifurcation involved resembles
the Hopf bifurcation, as the imaginary axis cross-
ing of an eigenvalue pair for the equilibrium is
accompanied by the appearance of a limit cycle,
whose period also evolves as 2π/

√
D + O(T ).

Note that a possible application of this two-
dimensional case when t > 0 is the prediction
of unstable limit cycles for T > 0 whose size
can be estimated, and then this limit cycle is the
boundary of the attraction basin of the origin, see
Figure 4.

4. THE TRIDIMENSIONAL CASE

Under the generic condition of observability for
system (5), every system of the above form can
be written in the generalized Liénard’s form

d

dτ




x1

x2

x3


 =




t −1 0
m 0 −1
d 0 0







x1

x2

x3


 +

+




T − t
M −m
D − d


 ϕ(x1), (9)

so that, regarding system (5), it turns out

AL =




t −1 0
m 0 −1
d 0 0


 ,

AC =




T −1 0
M 0 −1
D 0 0


 , b =




T − t
M −m
D − d


 .

Choosing again T as the bifurcation parameter,
for the critical value Tc = D/M with M > 0,
system (9) has a linear center in the zone C, see
Fig. 5, that is, the matrix AC have a pair of pure
imaginary eigenvalues. Then, it is a natural issue
to analyze whether a limit cycle bifurcates from
this configuration when the bifurcation param-
eter T moves. Due to geometrical reasons, the
logarithms of the characteristic multipliers will
be denoted by µr and µa, from radial and axial
respectively. By means of thorough analysis of
the closing equations, the following result can be
obtained.

Theorem 2. Let us consider system (9) with M >
0, Tc = D/M and

γ = DM −Dm + dM − tM2 6= 0.

For T = Tc the system undergoes a focus-center-
limit cycle bifurcation, that is, from the lineal cen-
ter configuration in the central zone, that exists
for T = Tc, one limit cycle appears for γ(T −
Tc) > 0 and T − Tc sufficiently small.

The amplitude a (measured as the maximum
in |x1|), the period P and logarithms of the
characteristic multipliers µr and µa of the periodic
orbit are analytic functions at 0, in the variable
(T − Tc)

1/3, namely



a = 1 +
(6π)2/3M4/3

8γ2/3
(T − Tc)

2/3 +

+
(6π4)1/3a4

960M1/3γ7/3
(T − Tc)

4/3 +

+ O (T − Tc)
5/3

,

P =
2π√
M

+
π(M −m)

√
M

γ
(T − Tc)+

− 62/3π5/3M5/6P5

20γ8/3
(T − Tc)

5/3 +

+ O (T − Tc)
2
,

µr = − (48π)1/3
M7/6γ2/3

D2 + M3
(T − Tc)

1/3 +

+ O (T − Tc)
2/3

,

µa =
2πD

M3/2
+ µa,1 (T − Tc)

1/3 + O (T − Tc)
2/3

,

where

µa,1 =
(48π)1/3

M5/6

(
Mt−D

γ1/3
+

M2γ2/3

D2 + M3

)
,

a4 = −120tM5 +
(
120D + 2t3 + 21mt + 72d

)
M4

+
[− (

93m + 27t2
)
D +

(
27m− 2t2

)
d
]
M3

+
(
2t2m + 25dt− 27m2

)
DM2

+
[
25D3 + 23 (mt− d) D2

]
M − 25mD3,

P5 =
[
M (M −m)2 + (Mt− d)2

]
(Mt−D) .

In particular, if γ > 0 and D < 0, then the
limit cycle bifurcates for T > Tc and is orbitally
asymptotically stable.

The coefficient γ allows a complete characteriza-
tion of the bifurcation when it does not vanish. Its
role is analogous to the coefficient of cubic term in
the Poincaré-Andronov-Hopf normal form. When
γ = 0 the bifurcation is of higher codimension,
requiring a specific treatment that will appear
elsewhere. In such cases, it can be rigorously
shown the existence of two limit cycles in certain
parameter regions.

5. CONCLUDING REMARKS

The given theorems describe codimension one bi-
furcations, similar to the Hopf bifurcation of dif-
ferentiable dynamics, see (Chow and Hale, 1982),
but it should be noted some differences. In par-
ticular, the expressions characterizing the bifur-
cation are in terms of the parameter to the power
one third instead of the power one half, and, what
is more important, the limit cycle amplitude’s
leading order is O(1), which indicates that the
appearance of the limit cycles is rather rapid as
they are born with a significant size.

Note that this bifurcation, although it could be
thought of a border-collision bifurcation in a

broad sense, it is not so strictly speaking due
to several reasons. First, there is no limit cycle
before the bifurcation but only a non-hyperbolic
periodic orbit belonging to a linear center and
this periodic orbit only exists for the critical value
of the bifurcation parameter. Second, there is no
discontinuity surface in the vector field which is
continuous everywhere.

It should be also remarked that it is possible, with
the same techniques, to obtain similar bifurcation
results for the asymmetric case of single-sided
saturation. Thus, the proposed methodology is
able to cope with a wider class of piecewise linear
systems.

REFERENCES

Andronov, A.A., A. Vitt and S. Khaikin (1966).
Theory of oscillations. Pergamon Press. Ox-
ford.

Carmona, V., E. Freire, E. Ponce and F. Torres
(2002). On simplifying and classifying piece-
wise linear systems. IEEE Trans. Circuits
Systems I: Fund. Theory Appl. 49, 609–620.

Carmona, V., E. Freire, E. Ponce, J. Ros and
F. Torres (2005). Limit cycle bifurcation in
3D continuous piecewise linear systems with
two zones. Application to Chua’s circuit. Ac-
cepted for publication in Int. J. of Bifurcation
and Chaos.

Chow, S. N. and J. K. Hale (1982). Methods
of Bifurcation Theory. Springer-Verlag. New
York.

Freire, E., E. Ponce and J. Ros (1999). Limit
cycle bifurcation from center in symmetric
piecewise-linear systems. Int. J. of Bifurca-
tion and Chaos 9, 895–907.

Freire, E., E. Ponce and J. Ros (2005). The focus-
center-limit cycle bifurcation in symmetric
3D piecewise linear systems. Accepted for pub-
lication in SIAM J. on Applied Mathematics.

Kriegsmann, G. A. (1987). The rapid bifurcation
of the Wien bridge oscillator. IEEE Transac-
tions on Circuits and Systems 34, 1093–1096.
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