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Abstract: We address in this paper the problem of multi-objective dynamic output-
feedback synthesis for continuous linear time-invariant systems. The design objective can 
be a mix of H2 performance, H∞ performance and closed-loop pole clustering. A new 
sufficient condition is proposed. This new condition is based on additional variables 
which allow the use of different Lyapunov functions for each performance criterion. It is 
shown that the conservatism of the standard method is perceptibly improved. The 
efficiency of  this approach is then illustrated  by some academic examples. &RS\ULJKW���
�����,)$&�   

  
Keywords: multi-objective performance, dynamic output-feedback, Lyapunov functions, 
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1. INTRODUCTION  

 
It is well known that if stability is a minimum 
requirement in control synthesis, it is not sufficient in 
practice and some performance level has to be 
guaranteed. In fact, the fundamental objective of a 
feedback control system is to achieve different 
performances. This paper focuses on multi-objective 
synthesis via dynamic output-feedback including H2 
performance, H∞ performance and pole clustering for 
continuous linear time-invariant systems. 
Lyapunov methods have proven to be efficient for 
solving such problems. However, in most LMI 
characterization of different performances, the 
different Lyapunov variables (one for each 
performance requirement) are multiplied with 
controller variables. This makes this problem non 
convex and then very hard to solve. One way to get 
rid of this problem is to impose the same Lyapunov 

function for all performance characterization. This 
approach is known in the literature as the Lyapunov 
Shaping Paradigm (LSP) and has been introduced by 
(Scherer et al., 1997). 
This restriction is one important source of the 
remaining conservatism encountered in the multi-
objective synthesis. Recently, in order to reduce this 
conservatism (Ebihara et al., 2004) have proposed a 
less conservative method based on dilated LMI 
approach using non common Lyapunov functions. 
This approach is still conservative and can’t be easily 
generalized for all possible performance criteria 
(limited to H2and root clustering performances). 
In this paper, a new approach is proposed to the 
design of locally optimal output-feedback controllers 
using non common Lyapunov function. This method 
is based on an iterative algorithm taking advantage of 
the degrees of freedom introduced by some 
additional variables.  



     

Some numerical examples are then presented to 
evaluate the efficiency of the proposed approach 
with respect to those presented in (Ebihara et al., 
2004). 
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2. PRELIMINARIES 
�
In this paper, we consider the continuous-time linear 
time-invariant system with the state-space equations: 
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where x ∈IRn is the state, w∞ ∈ IRm ∞ and w2 ∈ IRm 2 

are two disturbance vectors, u ∈ IRm is the input 
vector, z2 ∈ IRr2 and , z∞ ∈ IRr∞ are vectors of output 
signals related to the performance of the control 
system and y ∈ IRr is a vector of measured output. 
 
Let T∞, T2 denote the closed-loop transfer functions 
from, respectively w∞ to z∞ and w2 to z2. 
For some dynamical output-feedback controller 
u=Ky, our goal is to compute a dynamical output-
feedback controller: 
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that satisfies different performance objectives. The 
specifications include H∞ and H2 performance as 
well as closed-loop poles clustering in some sub-
region of the left half-plane. The motivation for 
using such a combination of performance measures 
are as follows: 
 

• The H∞ performance is convenient to 
enforce robustness of the closed-loop with 
respect to unstructured model uncertainties 
as well as to express frequency domain 
specifications. 

• H2 performance is related to the RMS 
response to white noise and to the energy 
of the system impulse response. 

• Poles clustering are useful to enforce some 
minimum decay rate or closed-loop 
damping. They are also useful to avoid fast 
dynamic and high frequency gain in the 
controller.  
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Given an H∞ level γ, find a strictly proper full-order 
output-feedback dynamic controller K (2) such that : 
  
- The H∞ performance γ≤∞∞7  is achieved. 

 
- The closed-loop poles must lie in a prescribed sub-
region of the left-half complex plane defined as 

)(),()( N6UF&+' ∩∩= α (figure 1) where: 
 

• )(α+ is a half-plane region defined as: 
{ } )0()Re(:)( >−<∈= ααλλα &+ . 

• �&�F�U� is a disk defined as:�
{ } ).0(:)),( <−<<−∈= UFUF&UF& λλ  

•  6�N��is a conic sector region defined as: 
{ } )0()Re()Im(:)( ><∈= NN&N6 λλλ . 

 

 
  

Figure 1: Region D for c=0 
 
- The H2 performance 

227 is minimized subject to 

the above two constraints. 
 
The controller K is then a solution of the following 
optimization problem: 
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For a given dynamic output-feedback controller K, 
let the minimal realization be given by: 
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where: 
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Let us define the following closed-loop transfer 
matrices: 
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A necessary and sufficient condition for the 
existence of an optimal multi-objective H2/H∞/D-
stability controller may be given:�
�
/HPPD����6FKHUHU�HW�DO����������
The following conditions are equivalent: 
1- Problem 1 has a solution. 
2- There exist symmetric positive definite matrices 
X2, X∞, Xα, Xc, Xs and a dynamic output-feedback K 
solution of the non-convex optimization problem: 
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This direct formulation of the multi-objective 
problem leads to a non-convex optimization problem 
known as a BMI problem (Bilinear Matrix 
Inequality) which is a generalization of the notion of 

LMI (Linear Matrix Inequality). Unfortunately, 
BMIs are much harder to solve than LMIs due to the 
non-convexity. One way to convexify this 
formulation is the use of the Lyapunov Shaping 
Paradigm which imposes the same Lyapunov 
function for the different performances at the 
expense of some conservatism. 
 

3. AN ITERATIVE APPROACH FOR THE 
MULTI-OBJECTIVE SYNTHESIS 

 
This section presents the main results of the paper. It 
is based on a new bilinear parameterization of the 
dynamic output-feedback controller.  
 
7KHRUHP���
The following conditions are equivalent: 
1- There exist a controller K solution of optimization 
Problem 1. 
 
2- There exist symmetric positive definite matrices 
X2, X∞, Xα, Xc, Xs and a dynamic output-feedback K 
solution of the optimization problem : 
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Note that inequalities (7), (8), (9), (10) and (11) can 
be written as follow: 
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Where φ, Q and X are defined as follow : 
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Then applying the elimination Lemma (Skelton et al. 
1997) we have inequalities (14), (15), (16), (17) and 
(18). 
 

� 
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Solution of the problem (1) implies to solve a 
bilinear matrix inequality (BMI) problem. We 
propose in this paper an iterative algorithm similar to 
coordinate-descent algorithm. The method consists in 
performing the optimization by alternatively fixing 
certain variables so that the problem is convex in the 
remaining ones.  Thanks to the extra variables 
introduced by the elimination Lemma (Skelton et al. 

1997), a natural decomposition among the decision 
variables is quite natural. 
$OJRULWKP�
 
1. Initialization step (k=1): Choose a stabilizing 

dynamic output-feedback controller K. 
2. step k (first part): Solve the optimization LMI 

problem: 
 

)(min
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Under 
(12), (13), (14), (15), (16), (17) and (18). 

Fi, Gi, Hi, Ej, Dj, Jj  (i=1..2, j=1..3) are frozen. 
 
3.  step k (second part): Solve the optimization LMI 

problem: 
 

)(min
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2
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α²³´´ ´´´µ
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=  

Under 
(12), (13), (14), (15), (16), (17) and (18). 

K is  frozen. 
4. Final step: If  εββ <− 2,1, ¸¸  then stop. 

.. =*  
and                            2,

* ¹ββ =  

Otherwise k ← k+1 and go to step 2. 
 

4. NUMERICAL EXAMPLES 
 
Two different examples are proposed to illustrate the 
reduction of conservatism obtained by the new 
proposed method for multi-objective design. 
�
([DPSOH����Multi-objective H2/D-stability problem�
�
The first example is borrowed from (Ebihara et al. 
2004) and it concerns the multi-objective H2/D-
stability problem. The state-space equations are 
given by: 
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The goal is to design a full-order dynamic output-
feedback controller K minimizing 

2
º¼»7  subject to 

the D-stability constraint )3.0()( +$½	¾ ⊂σ .  
This problem is solved using the Lyapunov Shaping 
Paradigm (LSP) and the dilated LMI approach 
(DLA) respectively developed in (Scherer et al., 
1997) and in (Ebihara et al., 2004). The results are 
then compared to the new approach proposed in 



     

theorem 2. In table 1, we show both the resulting 
upper bound and the actual cost. The corresponding 
closed-loop poles are recalled in table 2. 
 

Table 1 the resulting H2 cost 
 

Approach Upper 
bound 

Actual 
cost 

Lyapunov Shaping Paradigm 115.62 79.09 
Dilated LMI approach (DLA) 73.60 68.49 

New approach (BMI) 67.24 63.87 
 
 

Table 2 the closed loop poles 
 

LSP DLA  BMI 
 

-0.99 + 0.67i 
-0.99 - 0.67i 
-0.34 + 0.21i 
-0.34 + 0.21i 

-1.09 
-1.15 

 
-0.76 + 0.79i 
-0.76 -  0.79i 
-0.34 + 0.26i 
-0.34 - 0.26i 

-0.63 
-1.15 

 
-1.34 + 1.11i 
-1.34 - 1.11i 
-0.38 + 0.34i 
-0.38 - 0.34i 
-0.31 + 0.29i 
-0.31 - 0.29i 

 
It is clearly shown here that the approach developed 
in theorem 1 achieves the desired performance and 
yields upper bounds that are lower than those 
developed in (Scherer et al., 1997) and in (Ebihara et 
al., 2004).  
 
�
([DPSOH����Multi-objective H2/H∞ problem 
 
This example is borrowed from (Scherer et al., 1997)� 
and it concerns the multi-objective H2/H∞ problem. 
The state representation is given by: 
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We are interested here in the H∞ performance from w 
to z∞ and the H2 performance from w to z2. 
The optimal H2 performance from w to z2 is 7.748 
and is achieved for the controller: 

 

)933.9669.3)(164.5(

)2711.0)(168.5(7275.5
)(

22
+++

−+−
= VVV

VVV.  

 
for this controller the H∞ is γ = 23.586. 
The problem considered here is: 
Given an H∞ level γ, find a full order strictly proper 
dynamic-controller K(s) such that: 

- The H2 performance 
22

¿ÁÀ7 is minimized. 

- The H∞ performance 6.23≤∞∞7  is achieved. 

We know that the optimal solution of this problem is 
K2(s). Hence, we can test the performance of our 
approach against this known optimal solution: 
Solving this problem using the Lyapunov Shaping 
Paradigm ( LSP), we obtain the following result: 
 

- the H2 performance cost is 8.956 which is 
15% higher than the optimal value 7.748 
due to the use of a common Lyapunov 
function. 

- the corresponding controller is: 
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Now we solve the same problem using algorithm -1- 
and choosing KLSP as initialization. We obtain the 
following result: 
 

- The H2 performance cost is 7.981 which is 
very near the optimal value 7.748. 

- the corresponding controller is: 
 

2163.554880.336109.9

7233.16398.407558.7
)( 23
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5. CONCLUSION 

 
A new iterative method involving a bilinear matrix 
inequality for multi-objective dynamic output-
feedback synthesis has been proposed. This new 
approach features the properties of computational 
efficiency, guaranteed convergence to a local 
optimum, and applicability to a very wide range of 
problems. The design objectives considered are H2, 
H∞, and pole-placement constraints. Preliminary 
results obtained with academic examples shows its 
efficiency. 
Nevertheless, some prospective improvements may 
be scheduled especially its extension to the case of 
reduced-order dynamic output feedback.  
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