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Abstract: We describe a new constructive method for solving a linear indirect optimal
control problem with allowance for the features of special types of bang- bang
actuators. The method makes possible to obtain necessary and sufficient optimality
conditions to the control problems with bang-bang actuators, bang-bang actuators
with stagnation zones and bang-bang actuators with delay in feedback loop. On the
base of this approach the algorithms of optimal open- loop and on-line optimization
are justified for systems with constraints on control function and terminal states. All
results are illustrated by examples. Copyright c©2005 IFAC
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1. INTRODUCTION

The paper concerns the problem of on-line op-
timization of linear dynamic systems by differ-
ent types of bang- bang actuators (regulators)
(A.AQ. Feldbaum, 1963). It is supposed that the
structures of the actuators are given. At forming
control signal they can take into account them to
be relay (bang- bang), bang- bang actuator with
delays in feedback loop, with stagnation zone.

From mathematical point of view, the peculiarity
of control in consideration consists in choosing
control signal and functions from known special
classes but not in very wide traditional classes
such as piecewise- continuous, measurable and
generalized ones. In doing so, the approach sug-
gested in (Gabasov et al., 1995; Balashevich et
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al., 2001) are developed to construct realizations
of optimal feedbacks in real time.

In the paper along with the criteria of optimality,
algorithm of optimal open- loop and online opti-
mization are justified to control systems with con-
straints on control function and terminal states.
Some of the actuators leads to investigations of
the optimal control problems under state con-
straints what means considerable complication in
the study. The paper develops the mention results
of the authors and based on the adaptive method
(Gabasov et al., 1995) and fast algorithms of op-
timal control.

2. BANG— BANG ACTUATORS

Dynamic system control by bang-bang ac-
tuator. Consider the dynamic system

ẋ = Ax+ bu, x(0) = x0, (1)



which is controlled by two-positioned bang-bang
actuator on the time interval T = [0, t∗]. Here:
t∗ is fixed, x = x(t) ∈ Rn is a state vector
of the dynamical system, u = u(t) ∈ R is a
value of control function (input signal of the
control system), A is a given n × n matrix of
control system dynamics, b is a given n-vector of
parameters of input device.

System (1) is controlled in the following way. At
each moment t ∈ Th0 = {0, h0, . . . , t

∗ − h0}, h0 =
t∗/N0, N0 ∈ N is given, a current system state
x(t) is measured. This information is transmitted
to the control device which on that basis forms
a control signal and then gives the signal to the
input of the bang-bang actuator. The bang-bang
actuator produces the control function. The latter
can take only two values ±1 and change them only
at the switching points 0 < t1 < t2 < . . . < tp < t∗

(Fig.1). It is clear that on-off bang- bang control
can be uniquely defined via the initial value of
the control function u(0) = u0 = ±1 and vector
of control parameters τ = (t1, . . . , tp). Denote by
U1

p a set of control functions u(t), t ∈ T , produced
by the bang-bang actuator.
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Linear optimal control problem. Optimality
condition. Consider a terminal optimal control
problem:

J(u) = c′x(t∗) −→ max
u
, ẋ = Ax+ bu, x(0) = x0,

Hx(t∗) = g, u(·) ∈ U1
p , p = 1, 2, . . . . (2)

Here: g - is a given m- vector; H is a given m× n
matrix, I = {1, 2, . . . ,m}, J = {1, 2, . . . , n} are
sets of indexes of rows and columns of matrix
H, rankH = m < n, correspondingly.

A bang-bang control function u(·) = (u(t), t ∈ T )
is called admissible if corresponding trajectory
x(t), t ∈ T, of linear system (1) satisfies the con-
straint: x(t∗) ∈ X∗ = {x ∈ Rn : Hx = g}. An
admissible control function u0(·) is said to be opti-
mal if the optimal trajectory x0(t), t ∈ T, satisfies
the equality c′x0(t∗) = max c′x(t∗), u(·) ∈ U1

p .

Let us consider an admissible control function u(·)
with the vector of control parameters τ and u0.
Any another control function ū(·) can be obtained
from u(·) if: a) to shift points t0, tp+1 into the
interval T ; b) at every interval [ti, ti+1[ insert
2ki additional switching points ζi

1 ± ∆ζi
1, ζ

i
2 ±

∆ζi
2, . . . , ζ

i
ki
± ∆ζi

ki
, (ti < ζi

j ± ∆ζi
j < ti+1), j =

1, ki); c) move points ti, i = 1, p, preserving

their order. Note, that these actions describe the
class of used control functions. The vector of
the control parameters θ̄ of a new control func-
tion ū(·) is given by θ̄ = (t0 + ∆t0, . . . , ti +
∆ti, ζi

1 − ∆ζi
1, ζ

i
1 + ∆ζi

1, . . . , ζ
i
ki

+ ∆ζi
ki
, ti+1 +

∆ti+1, . . . , tp+1+∆tp+1), where ∆t0 ≥ 0;∆tk, k =
1, p;∆ζi

j ≥ 0, j = 0, ki, i = 0, p;∆tp+1 ≤ 0 are
arbitrary small by modulo values.

As a result of some special perturbations of (2),
using new notation, one can get the linearized
problem in the increments

l′∆θ −→ max
∆θ

, D∆θ = g0, d∗ ≤ ∆θ ≤ d∗. (3)

To get an optimality criterion of (3) we use the
next statement:

Lemma 1. If u0(·) is an open-loop control of (2)
and rankD = m, then the vector ∆θ = 0 is the
optimal feasible solution of (3).

Problem (3) is a special case of canonical lin-
ear programming problem. Introduce the function
ψ′(t) = (c′−ν′H)F (t∗)F−1(t), t ∈ T, which is the
solution of the adjoint system ψ̇ = −A′ψ, ψ(t∗) =
c − H ′ν. The function ψ(t), t ∈ T, is said to be
a co-trajectory, ∆(t) = ψ′(t)b, t ∈ T, be a co-
control. To formulate the optimality criterion of
the vector ∆θ = 0 of problem (3) we use the
proper results of the adaptive method (Gabasov
et al., 1995) and lemma 1. The statement is true.

Theorem 2. (Maximum principle). An admissible
control u(t), t ∈ T, of problem (2) is optimal iff it
is given by

u(t) = sign∆(t), t ∈ T. (4)

Construction of optimal open-loop controls.
Step 1. Set a number N = lN0 ≥ m, l ≥
1, N0 ∈ N . In the class of discrete controls uh(t) =
u(kh), t ∈ [kh, (k + 1)h[, k = 0, N − 1; with the
quantization step h = t∗/N, solve the problem

c′x(t∗) −→ max
u
, ẋ = Ax+ bu, x(0) = x0,

Hx(t∗) = g, |u(t)| ≤ 1, t ∈ T, (5)

using method (Gabasov et al., 1995). Accord-
ing to (Gabasov et al., 2001) the open-loop so-
lution u0

h(t), t ∈ T, of problem (5) has the
form u0

h(t) = u0(kh) = sign∆0
h(kh), t ∈

[kh, (k + 1)h[, k = 0, N − 1; where ∆0
h(kh) =

(k+1)h∫
kh

∆∗(t)dt/h, ∆∗(t) = ψ′(t)b, ψ̇ =

−A′ψ, ψ(t∗) = c − H ′ν, ν is an optimal vector
of potentials.

Let the solution to problem (5) identified the
structure of the optimal control function of (2), i.e.



the number of zeros 2 of the functions ∆0(t), t ∈
T, ∆0

h(t), t ∈ Th, are equal and sign∆0
h(t0) =

sign∆(t0) (excluding special cases when ∆0
h(t0) ≈

0, ∆0(t0) ≈ 0). If the structure of the optimal
control function is identified, then proceed to step
2. Otherwise, increase N and solve problem (5) by
the dual method taking the previous optimal base
as an initial one.

Step 2. Construct the bang- bang control
u1(t), t ∈ T, using the optimal discrete open-
loop control u0

h(t), t ∈ T, of (5). For that ev-
ery zero thk of co-control ∆0

h(t), t ∈ Th, with
|u0

h(t − h)| 6= 1 should be replaced by the point
tk = thk+(u0

h(thk−h)−1)h/2. New points tk and the
remaining zeros of the co-control ∆0

h(t), t ∈ Th are
used as the initial approximation τ1 of the vector
of control parameters for the finishing procedure
(Gabasov et al., 1995). Another way to construct
τ1 is to compose it from the zeros of the function
∆∗(t), t ∈ T .

The finishing procedure bases on the Newton
method and consists in solving system (6) with
respect to unknown ν, tk, k = 1, p.

∆(tk) = 0, k = 1, p; f(τ, u0) = g̃ (6)

If ∆̇(tk) 6= 0, k = 1, p, then the Jacobian of
system (6) is nonsingular and (6) can be solved
by the Newton method.

Fulfill 3-5 iterations starting from the approxima-
tion τ1 . If there is no quadratic convergence of the
method or the points tk, k = 1, p are gluing, then
go to step 1, increasing N , or to step 3. Otherwise
the solution τ0 of problem (2) can be constructed
with a required accuracy.

Step 3. Solve problem (3) on u1(·) with τ1 and
the discrepency w1 = g̃ − f(θ1, u0):

l′∆θ −→ max
∆θ

, D∆θ = w, d∗ ≤ ∆θ ≤ d∗. (7)

Using the solution ∆θ1 one can construct a new
approximation θ2 = θ1 + δ∆θ1, δ > 0. If the
inequality f0(θ2, u0)−(ν1)′f(θ2, u0) > f0(θ1, u0)−
(ν1)′f(θ1, u0), holds true for θ1 and ν1, then (7)
should be solved with θ2 and w2.

When s approximations have been fulfilled (s is
defined by necessary exactness), one can go to
the finishing procedure (step 2) with the initial
approximation θs. Otherwise N is increased to go
back to the step 1. More details are given in (N.
Kavalionak, 2004).

For constructing the optimal feedbacks of (3) by
the bang- bang actuators the special scheme is
proposed, which represent a procedure of correct-
ing the optimal open- loop control in real time.

2 The moment thk = kh is called a zero of co-control

∆0
h(t), t ∈ Th, if ∆0

h(thk − h)∆0
h(thk) ≤ 0, ∆0

h(thk) 6= 0.

3. BANG-BANG ACTUATORS WITH
DELAY IN FEEDBACK LOOP

In section 1 it was assumed that the processing of
information on states of the control system takes
s < h0 time units, and therefore was neglected.
Let before starting the control process we know
that if the last measurement of the current state
of control system (1) was made at the moment t,
then the actuator gives the corresponding control
signal to the input of the control system only
at the moment t + α, i.e with delay α > 0.
Denote by U2

p a set of control signals generated
by this actuator. As the delay in feedback loop
affects only the control process, it is sufficient to
describe the algorithm of functioning the optimal
controller under new conditions.

Before the control process starts the optimal con-
troller calculates the optimal open- loop control
u0(t|0, x(0)), t ∈ T, of (2) for the initial instant
(0, x0) by the method described for the bang- bang
actuators. Using this information the actuator
gives the control function u∗∗(t) = u0(t|0, x0) on
[0, α+ h0[ to the input of the control system. Let
the delay in feedback loop is only caused by the
time that needed to process the measurement of
the current state x(t).

At the moment t = h0 the optimal controller gets
the measurement x∗(h0). Using u0(t|0, x0), t ∈
[0, α + h0] it calculates the state x0(h0 + α) of
the system ẋ = Ax+ bu0, x(h0) = x∗(h0), for the
instant (h0 +α, x0(h0 +α)) by the method for the
bang- bang actuators. Then find the open- loop
solution u0(t|h0+α, x0(h0+α)), t ∈ [h0+α, t∗], of
problem (2) to feed to the system on [h0+α, 2h0+
α[: u∗∗(t) = u0(t−α|h0 +α, x0(h0 +α)), t ∈ [h0 +
α, 2h0 + α[.

Hereinafter the operations of the optimal con-
troller depend on the quantity of used micropro-
cessors. If there are not less then k = [α/h0]
microprocessors, the actuator gives the control
function u∗∗(t), t ∈ [h0 + α, 2h0 + α[ to the input
of the control system. To process the next mea-
surement x∗(2h0) the optimal controller switch on
the second microprocessor that will calculate the
control function for u∗∗(t), t ∈ [α + 2h0, α + 3h0[
and so on. By the moment α + h0 the first mi-
croprocessor has finished its work and the control
process is repeated.

From the described algorithm one can see that the
optimal controller with several microprocessors
can calculate given measurements with the same
rate as it gets them. The moments of states
measurements and the moments when the control
system gets corresponding signals differ from the
value α. In this case we say that the optimal
controller realizes optimal feedback in real time



with the delay α. If α < h0 one can say about the
real time (with no delay).

Suppose that there is only one microprocessor
that needs the α time units to process a current
measurement. In this case at the moment h0 the
optimal controller gets the measurement x∗(h0),
then calculates u0(t|h0, x

∗(h0)), t ∈ T , that can
be used only on [α+ h0, 2α+ h0[: u∗∗(t) = u0(t−
α|h0, x

∗(h0)), t ∈ [α + h0, 2α + h0[. The opti-
mal controller can not process the measurements
x∗(2h0), . . . , x∗(α), so we do not need them to
be fulfilled. The next measurement that can be
processed by the optimal controller is x∗(α+ h0).

4. BANG-BANG ACTUATORS WITH
STAGNATION ZONE

Control by bang-bang actuators with stag-
nation zones. Necessary and sufficient op-
timality conditions. The above described ac-
tuators were able to switch on the control func-
tion from a limit value to another one instantly.
Consider the bang-bang actuator with stagnation
zones. Before changing a current limit value to
another one it switch off from the control object
for a time 2β (Fig.2). During this time the con-
trol object gets a fixed limited signal u(t) ≡ uβ .
Its value defined by characteristics of the control
device. Let uβ = 0 .
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In the absence of the optimal feedback an open-
loop control for this kind of actuators will be
as follows. Before the beginning of the control
process the optimal controller calculates the initial
value of the control signal u0 = ±1, switching on
ς∗, switching off ς∗ moments and the switching
moments ti, i = 1, p : ς∗ < t1 < t2 < . . . < tp <
ς∗, (tk+1 − tk ≥ 2β, k = 0, p; ς∗ ≥ 0, t∗ − ς∗ ≥ 0).

According to these signals the actuator sets the
value u0 (in advance, before the beginning of the
control process), starts to give it to the control
object at the moment ς∗ and then switches the
control signal (taking into account stagnation
zones) till the moment ς∗. Typical parts of the
control signal u(·) ∈ U3

p are given:1. a)ς∗ =
0, u(t) = u0, t ∈ [0, t1 − β[; b) 0 ≤ ς∗ ≤ 2β, u(t) =
0, t ∈ [0, ς∗[;u(t) = u0; t ∈ [ς∗, t1 − β[; c) ς∗ =
2β, u(t) = 0, t ∈ [0, ς∗[;u(t) = u0, t ∈ [ς∗, t1 − β[;
2. u(t) = (−1)iu0, t ∈ [ti + β, ti+1 − β[;u(t) =
0, t ∈ [ti − β, ti + β[, i = 1, p− 1; 3. a)ς∗ =
t∗, u(t) = (−1)pu0, t ∈ [tp + β, ς∗]; b) t∗ − 2β ≤

ς∗ ≤ t∗, u(t) = (−1)pu0, t ∈ [tp + β, ς∗], u(t) =
0, t ∈ [ς∗, t∗]; c) ς∗ = t∗− 2β, u(t) = (−1)pu0, t ∈
[tp + β, ς∗], u(t) = 0, t ∈ [ς∗, t∗]. The case when
the control function has the same value before
and after the stagnation zone are supposed to be
singular and does not investigated.

Optimal control problem (2) is simplified to linear
increment problem by the scheme implemented in
the previous part of the paper.

Necessary and sufficient optimality condition can
be proved which lead to the local optimality of the
control:

Theorem 3. (Maximum principle). An admissible
control u(t), t ∈ T, of problem (2) is local optimal
iff

u(t) = sign∆(t), t ∈ [0, t1 − β[∪[tk + β,

tk+1 − β[∪[tp + β, t∗], k = 1, p− 1;

u(t) = 0, t ∈ [tk − β, tk + β[, k = 1, p. (8)

Scheme of functioning of the optimal con-
troller. We construct an optimal open-loop con-
trol function of problem (2) in the class of dis-
crete controls (Gabasov et al., 2001), find optimal
discrete control u0

h(·) with no stagnation zones
and with switching points thk , k = 1, N , and then
operate under one of the following ways:

A. In the neighborhood of the discrete switching
points thk the optimal discrete control function
is changed by considering the bang-bang control
function with stagnation zones [tk − β, tk + β[.
Then with the help of the iterative method and
the linearized problem in increments we find ad-
missible control function u1(·) ∈ U3

p . Refine the
initial approximation to such degree that a special
finishing procedure based on the Newton methods
convergences. Its equations are given by

∆(tk − β) + ∆(tk + β) = 0, k = 1, p;

f(τ, u0) = g̃. (9)

The Jacobian of system (9) is nonsingular if
∆̇(tk − β) + ∆̇(tk + β) 6= 0, k = 1, p. On the
base of this special procedure find the optimal so-
lution u0(·) ∈ U3

p of problem (2) with the required
accuracy.

B. Choose a sufficiently small number β1 < β, and
construct an initial bang-bang control function
u(·) ∈ U3

p with 2β1. Using the special finishing
procedure, find the solution of problem (2) with
the stagnation zone 2β1. Increasing the stagnation
zone up to 2β2, β2 > β1, and using the previous
solution as the initial one construct the open-
loop solution u2(·) ∈ U3

p with the stagnation zone
2β2 by the finishing procedure. Through a finite



number of steps one can get βk = β and the open-
loop solution u0(·) ∈ U3

p of problem (2).

The algorithm of optimal controller work.
Before the beginning of the control process the
optimal controller calculates the open- loop solu-
tion u0(·) of problem (2) with the switching points
tk, k = 1, p. Let ς∗ = 0, ς∗ = t∗. At the moment
t = 0 the actuator begins to give the control
function u∗∗(t) = u0(t), t ∈ [0, h0[ to the input of
the control system. At the moment h0 the optimal
controller gets the measurement x∗(h0), on which
it calculates u0(t|h0, x

∗(h0)), t ∈ T (h0), with the
switching points tk(h0), k = 1, p.

If t1(h0)− β ≥ 2h0, then the actuator keeps con-
trol function u0(t) = u0 on the interval [h0, 2h0].
The situation does not change till the moment
τ1 ∈ T (τ1), when the inequalities τ1 < t1(τ1) −
β ≥ τ1 + h0 are hold at first time. On the interval
[t1(τ1)−β, t1(τ1)+β[ the actuator switch off from
the control system: u∗∗(t) ≡ 0. But the optimal
controller continue to calculate the optimal solu-
tions and the corresponding switching moments
ti(τ), i = 2, p on the base of the measurements
x∗(τ), τ ∈ [t1(τ1)−β, t1(τ1)+β[. At the same time
it takes into account that u∗∗(t) ≡ 0, t ∈ [t1(τ1)−
β, t1(τ1) + β[. Let t2(τ1)− β > t1(τ1) + β, except
special cases. At the moment t1(τ1)+β the actua-
tor connected to the control object and produces
the control function u∗∗(t) = −u0, t ∈ [t1(τ1) +
β, τ1 + 2β + h0[. Up to the end of the control
process the optimal controller and actuator repeat
the scheme.

5. EXAMPLE

The following problem was used in computer
experiments:

J(u) =

t∗∫
0

u(t)dt −→ min
u
, , u(t) ∈ U,

ÿ = −y(t) + u(t), y(0) = y0, ẏ(0) = 0,

y(t∗) = 0, ẏ(t∗) = 0, t ∈ T = [0, t∗]. (10)

The bang-bang actuator. Initial values U =
{0, 1}, t∗ = 12; y0 = 3; the optimal open-loop solu-
tion of (10) was obtained with the optimal vector
of switching points: τ0{0.737, 2.375, 7.269, 8.544},
and u0 = 0. If dynamical system (10) is un-
der unknown disturbances w(t) = 0.1sint, t ∈
[0, 7.4];w(t) = 0, t ∈]7.4, t∗]; the optimal on-
line solution τ0 = (0.7384, 2.3604, 7.3151, 8.5748),
u0 = 0 of (10) was obtained.

Bang-bang actuator with delay in feedback loop.
Think the initial value be the same as for bang-
bang actuator. If dynamical system (10) is un-
der unknown disturbances w(t) = 0.1sint, t ∈

[0, 7.4];w(t) = 0, t ∈]7.4, t∗]; and delay α = 0.1
then the next optimal on- line solution τ0 =
(0.6384, 2.2604, 7.2151, 8.4748), u0 = 0 of (10)
could be obtained.

The bang- bang actuator with stagnation zone.
Let u(t) ∈ U = {0, 1} ∪ {uβ};w(t) =
0.13sint, t ∈ [0, 5.8];w(t) = 0, t ∈]5.8, t∗ =
12]. For β = 0.4, uβ = 0.5 the vec-
tor of the optimal switching points is τ0 =
(0.620327, 2.4761407, 7.2427714, 8.5592467),u0 =
0,J(u) = 3.172; For β = 0.1, uβ = 0.5—
τ0 = (0.727246, 2.3779, 7.28556, 8.50384); u0 = 0,
J(u) = 2.868934.

6. CONCLUSION

The finite algorithms of on-line optimization for
linear dynamic systems with constraints on ter-
minal states and control functions are justified.
To organize the control the actuators of different
kind are used such as the bang-bang actuators,
bang- bang actuators with delay in feedback loop,
bang- bang actuators with stagnation zone. Nu-
merical computation conducted demonstrate the
efficiency of the algorithms of optimal on-line con-
trol.
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