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Abstract: Functional safety, as addressed in the standard IEC 61508, is a key
requirement for a high dependability of controlled systems. In order to guarantee
that the function of programmable logic controllers (PLC) complies with given safety
specifications, the use of verification has proven to be useful. This contribution builds
upon a recently proposed approach to verify PLC programs with time specifications.
It starts from a controller design given as sequential function chart (SFC), transforms
the SFC into timed automata (TA), and applies model checking to verify (or falsify)
functional safety. Since the explicit representation of the cyclic operation mode of
PLC can lead to complex TA models, this paper investigates to which extent the
cyclic mode can be omitted, to obtain simplified models for which the verification
effort is considerably smaller. Copyright c© 2005 IFAC
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1. INTRODUCTION

A high level of dependability of logic controllers
which supervise the operation of production plants
is not only desirable to reduce the plant downtime,
but is mandatory if the controller has to ensure
that the plant does never encounter safety-critical
situations. According to (Avizienis et al., 2000),
the term dependability involves the aspects avail-
ability, reliability, safety, maintainability, and -
maybe less important for logic controllers - in-
tegrity and confidentiality. This paper focusses on
the issue of functional safety, as defined in the
standard IEC 61508 (Int. Electrotechn. Commis-
sion, 2002). Functional safety refers to the prop-
erty that an electronic or programmable system
operates together with its environment such that
significant hazards (harming the personnel, equip-
ment, or environment) are prevented. In the con-
text of designing logic controllers for production
systems, the consideration of functional safety is
crucial for transferring the design specifications

into the control code that is eventually imple-
mented on programmable logic controllers (PLC).

To check if the control code complies with all
safety-relevant requirements, testing for a chosen
set of inputs to the PLC is the technique which
is usually applied. As a complementary means,
several academic groups have suggested formal
verification. In particular model checking, which
algorithmically searches the reachability tree of a
transition system to decide if a formal property
is satisfied (Clarke et al., 1999), has been em-
ployed for the verification of logic controllers, see
e.g. (Moon et al., 1992; Stursberg, 2000). Since
Sequential Functions Charts (SFC) become in-
creasingly popular to specify industrial logic con-
trollers, a number of recent investigations aim at
making model checking applicable to SFC. While
the approaches in (Bornot et al., 2000; Lam-
périère and Lesage, 2000) transform the SFC
into (purely discrete) automata to apply verifi-
cation subsequently, the methods in (L’Her et



al., 1998; Remelhe et al., 2004; Bauer et al., 2004b)
convert SFC into verifiable timed automata (TA),
and thus make the inclusion of quantitative time
into the analysis possible. The drawback of the
latter method is, however, that the cyclic execu-
tion mode of PLC is explicitly transferred to the
TA model, resulting in a rather complex model
and thus a high verification effort (see Sec. 2).
This motivates, as the main contribution of this
paper, a modified transformation procedure into
TA (Sec. 4). The key idea is that the TA model
is driven by plant events (rather than being trig-
gered in every cycle), while the delay of the control
actions, which results from the cyclic execution,
is still considered (Sec. 3). It is shown in Sec. 5
for an example that the modified procedure can
significantly reduce the computational effort for
the verification.

2. VERIFICATION BASED ON
TRANSFORMATION OF SFC INTO TA

Figure 1 sketches the overall procedure proposed
to design logic controllers for production systems:
The set of design specifications and an under-
standing of the plant behavior are first converted
into a design of the logic controller. The use of
SFC for formulating the controller is justified by
the fact that the charts intuitively represent se-
quential and parallel executions, and clearly es-
tablish which control actions are assigned to dif-
ferent steps (see Sec. 5 for an example).

In order to investigate whether the control de-
sign complies with the specifications, the SFC
is translated into a set of communicating timed
automata. The plant behavior is also modeled by
timed automata – it is stressed at this point that
the investigation of functional safety of the con-
trolled system makes it indispensable to employ
a plant model, because most safety properties are
expressed for the plant part of the system. The
TA model of the plant triggers the execution of
the controller by events, and a control action is
returned from the controller, possibly with a delay.
For the parallel composition of the two parts of
the model, model checking can reveal whether a
formalized representation of the specifications is
satisfied. In the context of functional safety, a
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Fig. 1. Controller design procedure.

typical specification is to check whether any exe-
cution of the controlled systems leads to a safety-
critical state. For timed automata, the answer can
be obtained, e.g., by applying the tool Uppaal

(Pettersson and Larsen, 2000). If the verification
shows that all relevant specifications are satisfied,
the SFC controller can be implemented; other-
wise it has to be corrected. If the violation of a
specification is due to an insufficiently detailed
plant model (what often can be inferred from the
violating execution), the verification has to be
repeated with a refined TA for the plant behavior.
(If a TA model is not appropriate in general, one
can resort to hybrid models and the techniques
described in (Stursberg, 2000).)

A key step of the procedure is the transforma-
tion of the SFC controller into a TA model with
equivalent behavior. As the basis of the transfor-
mation, the definition of SFC is first reviewed (see
also (Int. Electrotechn. Commission, 2003) for an
informal description and (Bauer et al., 2004a) for
a formal definition). For simplicity, the notion of
hierarchy and history is omitted here:

Def. 1: A Sequential Function Chart is a tuple
SFC = (ST, s0,X,G, T,A, α,C) with:

• a finite set of steps ST and an initial step
s0 ∈ ST ;

• a finite set X of variables, divided into input
(Xin), output (Xout), and internal (Xint) vari-
ables;

• a set G of transition conditions;
• a finite set of transitions T ⊆ (2ST \{∅})×G×

(2ST \ {∅});
• a finite set A of actions a, each of which is a

tuple a = (q, τ, o, f) consisting of a an action
qualifier q ∈ Q = {N,S,R, P, P1, P0, L,D, SD,

DS, SL}, a time quantifier τ ∈ {∅, tv} with
tv ∈ Q≥0, an execution flag f , and an operand
o which is either an internal or output variable,
or a function of an input variable;

• a function α: ST → B which assigns an action
block b ∈ B to each s ∈ ST , where b(s) is an
ordered subset of A;

• a finite set C of clocks which contains a clock
c for each non-empty time qualifier.

The action qualifiers in Q denote : N - not stored,
S - stored, R - reset, P1 - pulse when enter-
ing a step, P0 - pulse when leaving a step, P

- pulse when entering and leaving a step, L -
limited, D - delayed, SD - stored and delayed,
DS - delayed and stored, and SL - stored and
limited. A configuration of SFC is given by γ =
(V, STa, Aa, Af ,Ω), where V are the current val-
ues of the variables in X, STa ⊂ ST the set of
active steps, Aa ⊂ A the set of active actions,
Af ⊂ A the set of final actions (i.e. actions
that are executed a last time as they are as-
sociated with steps that were just deactivated),



and the valuations Ω of the clocks in C. A run
rSFC = (γ0, γ1, γ2, . . .) of SFC is a sequence of
configurations, with an initial configuration γ0,
and all subsequent γi are obtained from the cyclic
execution of the PLC according to:

(1) receive inputs from the plant and store them
as values of Xin;

(2) program execution:
(a) execute the actions in Aa and Af accord-

ing to a given total order (i.e., if f = 1
applies for the boolean execution flag);
the result is an updated V ;

(b) determine which transitions can be exe-
cuted depending on the conditions in G

(which can involve time constraints for
the clocks in C), on Aa, and on STa;
for conflicting transitions, the execution
is specified by a given priority; the result
of this step is an updated set STa;

(c) determine which actions become active
or inactive, i.e., the sets Aa and Af are
updated; update the clock valuations Ω;

(3) emit the values of Xout as control actions to
the plant;

(4) wait until a (possibly varying) cycle time
TC ∈ [Tmin

C , Tmax
C ] is elapsed since starting

the cycle, then proceed with step (1).

The scheme for translating a controller given as
SFC into TA according to (Bauer et al., 2004b)
can be summarized as follows: The SFC is first
partitioned into syntactical units that represent
either sequential chains (alternating sequences of
steps and transitions) or parallel chains (two or
more sequential chains that are enclosed by a par-
allel branching). The units are translated into sep-
arate TA which communicate via synchronization.
The actions associated to the steps are modeled
again by separate automata with clocks and time
constraints if the corresponding action qualifiers
involve time. The TA model of the controller is
completed by a coordinator automaton which has
the main function of establishing an execution
corresponding to the cyclic execution of a PLC.
Essentially, the coordinator triggers the different
automata according to the order of the PLC cycle,
i.e., each automaton synchronizes at least once
per cycle with the coordinator. After termination
of a cycle (the duration of which is modelled
by a clock), the communication with the plant
automata is scheduled. The following section pro-
poses an alternative scheme.

3. AN EVENT-BASED REPRESENTATION
OF THE PLC CYCLE

To discuss an event triggered controller model, the
notation of the TA model is first clarified:

Def. 2: A timed automaton is defined as TA =
(Z, z0, L, C,E, inv) with:

• the finite set Z of states with an initial state
z0;

• the set Lab of synchronization labels including
an empty symbol ε;

• the finite set C of n clocks c;
• a finite set E of transitions e = (z, z′, l, g, χ, ρ) ∈

E in which z ∈ Z is the source state, z′ ∈ Z

the target state, l ∈ Lab a synchronization
label, g a transition guard, χ ∈ Rn a value
assignment for all clocks in C, and ρ a function
indicating which clocks are reset; g is a Boolean
combination of inequalities k1 · χ(c) ∼ k2 with
c ∈ C, and k1, k2 ∈ Q, and ∼∈ {<,≤,=,≥, >};

• and a function inv that assigns a Boolean
combination of the same type as g to each state
z ∈ Z.

A run of TA is a sequence rTA = ((z0, χ0), (z1, χ1),
(z2, χ2) . . .), where (z0, χ0) is the initialization to
z0 and χ0 := 0n, and a timed state (zi+1, χi+1) fol-
lows from (zi, χi) by executing e = (zi, zi+1, l, g, χ′

i)
∈ E such that: TA synchronizes with another au-
tomaton if l 6= ε, χ′

i = χi +µ ·1n (µ ∈ Q≥0) fulfills
g, all χ′′

i with χi ≤ χ′′
i ≤ χ′

i fulfill inv(zi), and
χi+1 results from resetting the clocks indicated
by ρ to zero and leaving the others unchanged.

Since the target of the model transformation dis-
cussed below is the type of TA used in the tool
Uppaal (Pettersson and Larsen, 2000), it is neces-
sary to mention the special constructs available in
Uppaal: (a) additional variables can be defined;
g can depend on these variables, and their values
can be modified by transitions in E; (b) three
different types of channels exist: (i) pairwise syn-
chronization between a sender (l!) and a receiver
(l?) for l ∈ Lab, (ii) urgent channels, for which
the synchronized transitions of sender and receiver
are taken at the earliest time possible, and (iii)
broadcast communication, in which a sender syn-
chronizes with an arbitrary number of receivers (if
the latter are ready to synchronize); (c) the states
z ∈ Z can be marked as urgent, i.e. z must be left
without delay, and as committed, meaning that z

is left with highest priority and without delay.

A TA model according to this definition is obvi-
ously one, in which the execution is defined on
dense time, and progress is triggered by com-
munication among automata or transitions that
depend on dense time constraints. However, the
approach in (Bauer et al., 2004b), maps the PLC
cycle into a ‘sampled time’ construction – this is
problematic because of very different timescales
which correspond to the typical cycle time TC

of a PLC, and to the typical response time of
production systems (in particular chemical pro-
cessing systems) respectively. While TC is usually
chosen in the order of milliseconds, the frequency



of events in such plants is typically in the order
of minutes, or even hours. As a consequence, a
large number of cycles has to be processed be-
tween two consecutive events without any change
of the sensor signals received by the controller, or
the control actions. This means for verification,
that the run rTA contains long sequences of timed
states, in which only the coordinator automaton
changes its states, but not the automata repre-
senting the plant or the step-transition chains of
the SFC. The resulting length of rTA can make
the verification of the controlled system inefficient
or even infeasible with respect to computation
time and memory consumption. Figure 2 shows
this effect for an event signal e(t) that marks the
occurrence of two consecutive plant events ep1,
ep2, i.e. transitions with synchronization labels are
executed in the plant automata at event times te1
and te3. For a controller TA that explicitly models
the PLC cycle, the event ep1 is read at t3, and a
corresponding delayed control event (denoted by
ec1) at te2 is sent to the plant (write) at t7. The
cyclic execution continues in the periods without
events.
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Fig. 2. Cycle and event-triggered execution.

As a more efficient way of modeling, the event
driven scheme sketched on the lower abscissa in
Fig. 2 is proposed: the event ep1 is processed by
the controller in the time interval [te1, te1 + TC ],
and the control action is returned to the plant for
t ∈ [te2, te2 + TC ]. The controller is triggered the
next time only when another event e2 occurs, i.e.
all intermediate cycles are not modeled. Figure 3
shows how this concept can be realized with TA:
In case of a plant event, the trigger automaton
transitions into its right state, and emits a trigger
label ζ? within the interval [0, TC ] after the event.
This label triggers a controller transition (leading
to a control action, i.e. the direct manipulation
of an x ∈ X, or the activation of an action
automaton, see below). Furthermore, ζ! triggers
an automaton which checks if the valuation (V ′)
of the variables x ∈ X has changed since the
last triggering event. If so, the trigger automaton
reacts to the control event ec afterwards (υ marks
an urgent state). This construction is an over-
approximation of the cycle-triggered execution,
since the update of the controller model is not
fixed to the cycle time, but can occur at any
t ∈ [te, te + TC ] after an event.
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Fig. 3. Modeling the event-triggered execution.

4. EVENT-TRIGGERED
TRANSFORMATION OF SFC INTO TA

Given an SFC according to Def. 1 and the target
format according to Def. 2, the TA model with an
event-based execution is obtained as follows:

(1) The SFC is partitioned according to the rules
of the graph grammar in (Bauer et al., 2004b).

(2) For each partition, one TA is introduced such
that:
• each step of the partition, or each embedded

partition respectively, is represented by a
single state z of TA;

• the set Z is extended by an additional state
that represents the inactivity of the respec-
tive partition;

• each transition (with a pair of ingoing /
outgoing arcs) contained in the partition is
mapped into one transition of E.

(3) The transition guards g are added such that:
• time conditions in SFC are translated into

a pair of guard and invariant for the corre-
sponding transition and state in TA;

• the input variables Xin of SFC are mod-
eled by pairwise synchronization between a
plant TA and the trigger automaton, and by
variables as shown in Fig. 3.

(4) The actions A are first divided according
to the action qualifiers into: untimed actions
(N,R,S,P,P1,P0 ), simple timed actions (L,D),
and complex timed actions (SD,DS,SL). The
first two categories are directly embedded in
the automaton for the respective partition,
while complex timed actions are modeled by
separate TA (see below). If an action manip-
ulates a variable of Xint or Xout in SFC, a
corresponding variable is introduced for TA,
and it is set by the respective transition. If
the action operand is an external function,
the latter is modeled by a separate TA that
synchronizes over channels.

(5) The trigger automaton and the evaluation
check automaton are introduced as described
before.

Figure 4 shows exemplarily how a parallel branch-
ing of the SFC is transformed into the TA model:
When the transition condition g1 is satisfied, and
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the label ζ! is received from the trigger automaton,
the left automaton first transitions into an urgent
state, and then further into a state zp, marking
that the parallel branching is reached. The other
two automata (one for each branch) synchronize
with the latter transition upon receiving the label
α, and leave the states z0, which represent the
inactivity of the two branches. Correspondingly,
the synchronization over the label β means that
the parallel branching is left, after the condition
g2 is satisfied. Figure 5 shows for examples of
an untimed action (N), a simple timed action
(D), and a complex timed action (DS) how the
qualifiers are transferred into the TA model. (a1

is an integer variable that is initialized to zero.)

5. APPLICATION TO AN EXAMPLE

The approach is illustrated for the example of a
controlled batch evaporation system, as described
in (Remelhe et al., 2004). The system consists of
two tanks T1 and T2 with heaters, a condenser,
and pipes to fill T1, to empty T1 into T2, to
drain T2, and to transfer vapor from T1 into
the condenser. All pipes (except the last one)
are equipped with on/off-valves. Furthermore, the
tanks are equipped with sensors for monitoring if
thresholds for the liquid levels, the temperatures,
and the concentration of a dissolved substance
are exceeded - this information defines the plant
events received by the controller. An SFC con-
troller for this system is shown in Fig. 6. The left

branch models the nominal operation, i.e. T1 is
filled with material, the latter is evaporated until
a desired concentration is reached, then T1 is emp-
tied into T2; this procedure is repeated twice, and
finally T2 is emptied. The right branch models
exception routines for the cases that either the
heater in T1 or the condenser has a malfunction.
The available control actions are to open or close
the valves, and to switch the heaters and the
condenser on or off.

The transformation of the controller using the
method in Sec. 4, divides the SFC first into the
partitions P0, P1, and P2, as indicated by the
dashed boxes in Fig. 6. The subsequent trans-
formation leads to 6 automata overall, three of
which represent the partitions, and one the time-
dependent action ‘DS’. Figure 7 shows exemplar-
ily the transformation result for the partition P2
(error handling).

The plant model includes automata for the liq-
uid levels in T1 and T2, the heaters, the con-
denser, and the state of aggregation in T1. The
automaton for the latter is shown in Fig. 8.
Relevant verification tasks for this system are
to check whether the following three formalized
specifications are true for the parallel compo-
sition of all automata: (1) E〈〉 tank2.emptying,
(2) A[ ] not liquid.crystallizing, and (3) A[ ] not
liquid.overpressure. The first specification formu-
lates that a run exists which leads to the state
‘emptying’ of T2, i.e. it checks whether the pro-
duction goal can be reached. The second and third
specifications formulate safety properties, namely
that two critical states in the automaton in Fig. 8
are never reached. The TA model is complemented
by an error automaton that emulates that either a
heater malfunction (error1), or a condenser mal-
function (error2) can occur at arbitrary times.

The verification with Uppaal leads to the result
that all three specifications hold true. In all three
cases, the computation time is below 1 CPU-

S1

S2

S3

S4

R v1,v2,v3,H1

v1

S H1
D#200s v4

lip201

qis202

not lim204

P count++
N v2

count<3
count==3

Se4

S5

not lim303

R

N v3
R v4

Se1

Se2Se3

Se6

DS#200s wait

error1error2

not lim204
wait

not lim204

qis202

S6

S0

start

S0

R wait

error1or
error2

er_solved

Se7
S er_solved

S1

N
start

p1N
P count:=0

Se5
R H1
S v2

R H1
S v3

R H1

R v4
R H1

R v4 R v4

not lim204

true

count==3

R er_solved

P0

P1 P2

PAR

Fig. 6. Example: SFC controller.



Fig. 7. TA model for the partition P2.

second, and the length of the run by which specifi-
cation (1) was found to be true is 52 timed states.
(A cycle time of 1 time unit was chosen.) For com-
parison, the verification of specification (1) for the
same plant model but with the method described
in (Bauer et al., 2004b) terminated in 3.5 minutes
on the same PC for a relatively large cycle time
of TC = 50. The corresponding run comprised
3248 timed states. (When using TC = 1, the
computation did not terminate within 1 hour.) In
all cases, the outcome of the verification (i.e. the
satisfaction of the specification) was identical.

6. CONCLUSION

The paper presented an approach by which SFC
controllers with timed action qualifiers can be
transformed into timed automata. The subsequent
verification reveals whether the composition of the
transformed controller and an appropriate plant
model does meet dependability requirements like
functional safety. As illustrated for an example,
the gain in efficiency of the verification can be
considerable if the method presented here is com-
pared to the one in (Bauer et al., 2004b). Future

Fig. 8. TA model of the aggregation state of the
liquid

work includes to provide a tool for the automatic
transformation of SFC into TA models.
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