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1. INTRODUCTION

Model predictive control (MPC) is a control ap-
proach in which the current control move is ob-
tained by repeatedly solving online a finite hori-
zon, open-loop optimal control problem. At each
instant, the optimal control problem is solved
starting from the current state, and the input is
set to the first move in the computed optimal in-
put sequence. Nonlinear MPC has been the object
of extensive study in recent years, and the theory
related to stability and optimality has reached a
point of relative maturity, as outlined in (Mayne
et al., 2000).

For general nonlinear systems, the optimal control
programming problem which must be solved at
every instant is nonconvex. Although much of
the stability literature assumes the use of global
solutions, in practice the standard approach is to
identify a local optimum by linearizing the sys-
tem about an initial candidate input trajectory,
and solving a sequential quadratic programming
problem (Biegler, 1998; Diehl et al., 2002).
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In order to avoid the iterative solution of nonlinear
programs, (Ohtsuka, 2004) presents an approach,
inspired by continuation methods, for updating
the control vector by a continuous-time update
law. In that work, however, dynamics associated
with the minimization are eliminated by requiring
that the optimal control problem is initially solved
offline to provide an optimal, rather than simply
feasible, initial control parameterization.

Instead of assuming that an optimal control pa-
rameterization is instantaneously available at the
switching intervals, as is the case in standard
NMPC stability proofs, in this work the evolution
of the nonlinear program (NLP) is modeled as
a continuous-time update law and it is demon-
strated that stability can be preserved even when
the NLP evolves throughout the control interval.
Furthermore, the stability proof does not depend
on the coarseness with which the input trajectory
is discretized, and thus provides a means to reduce
the dimensionality of the NLP without compro-
mising closed-loop stability.

This paper is organized as follows. Section 2 de-
scribes the problem and relevant assumptions,
while section 3 outlines the design approach. Sec-
tion 4 contains a brief simulation example.



2. SYSTEM DESCRIPTION

The primary objective of the control design is as-
sumed to be asymptotic regulation of the general
nonlinear system

ẋ = f(x, u) (1)

to the origin x = 0. The mapping f : R
n ×

R
m → R

n is assumed to be smooth, and satisfies
f(0, 0) = 0. The state and input trajectories
are everywhere subject to the pointwise-in-time
constraints x ∈ X ⊃ X0 and u ∈ U ⊆ R

m, with
X and U closed, convex sets having nonempty
interiors (denoted X̊ and Ů, respectively).

A second objective of the control is to achieve
satisfactory performance with respect to a given,
meaningful cost function J∞ =

∫ ∞

t0
L(x, u)dτ .

The function L : X × U → R≥0 is assumed to
be C1, and is upper and lower bounded by class
K∞ functions γU (‖x, u‖) and γL(‖x, u‖), respec-
tively. Since online infinite horizon calculations
are impractical, this cost is approximated over a
receding horizon tf = t0 + T as

Jrh(x(·), u(·)) =

∫ tf

t0

L(x, u) dτ + W (x(tf )) (2)

where the penalty W : Xf → R≥0 is positive semi-
definite and C1 on the terminal set Xf .

Assumption 1. T , X, Xf , U are such that for every

initial state x0 ∈ X̊, there exists a trajectory
(x(t), u(t)) of (1) such that (x(t), u(t)) ∈ X̊ × Ů,
∀t ≥ t0 and x(t0 + T ) ∈ X̊f

The next assumption is a slightly strengthened
version of the sufficient conditions for MPC sta-
bility given in (Mayne et al., 2000).

Assumption 2. A known feedback u = α(x),
where α : X → R

m is locally Lipschitz, satisfies

(1) Xf ⊂ X̊, Xf closed, 0 ∈ Xf .

(2) α(x) ∈ Ů for all x ∈ Xf .
(3) ẋ = f(x, α(x)) renders Xf positive invariant.
(4) ∃λ > 0 such that ∀x∈Xf ,

∇WT f(x, α(x)) + L(x, α(x))≤−λ ‖x‖
2
.

For the remainder of the paper, we denote by
fα(x, v) , f(x, α(x) + v) the nominal closed-loop
dynamics with control u = α(x) + v.

3. DESIGN APPROACH

3.1 Barrier functions

Constraints are incorporated by augmenting the
functions L and W with gradient-recentered bar-
rier functions of the form (Wills and Heath, 2004)

La(x, u) = L(x, u) + µ
(

B̄x(x) + B̄u(u)
)

W a(xf ) = W (xf ) + µB̄xf
(xf )

B̄i(i) = Bi(i) − Bi(0) −∇Bi(0)T i, i ∈ {x, u, xf}

The functions Bx, Bu, Bxf
can be any appropriate

barrier functions defined on the convex sets X,
U, and Xf , with weighting constant µ > 0.
By construction, gradient-recentering the barriers
preserves La(0, 0) = 0 and W a(0) = 0. For
computational and scaling reasons, use of self-
concordant barrier functions is preferable when
possible (Nesterov and Nemirovskii, 1994).

Assumption 3. The barriers Bx, Bu, Bxf
and

weighting µ are chosen to satisfy

∇B̄xf
(x)T fα(x, 0) + B̄x(x) + B̄u(α(x)) ≤

λ

µ
‖x‖

2

for all x ∈ Xf .

Remark 4. It can be shown from the closedness
of Xf , its invariance under ẋ = fα(x, 0), and the

strict containments Xf ⊂ X̊ and α(x) ∈ Ů, that
for any given barriers Bx, Bu, Bxf

, and given set
Xf satisfying Assumption 2, there exists µ∗ > 0
such that Assumption 3 holds for all µ ∈ (0, µ∗).

Using Assumption 3, the statement of Assumption
2.4 is equivalent to

∇W aTf(x, α(x)) + La(x, α(x))≤0, ∀x ∈ Xf (3)

Remark 5. A complementary approach to attain
(3) is outlined in (Wills and Heath, 2004), where
for a system with a controllable linearization,
choices α = Kx, L = ‖x‖

2
Q + ‖u‖

2
R, and self-

concordant barrier functions with specified µ, the
set Xf satisfying (3) is solved for as a level set of

W = ‖x‖
2
P , where P solves a Lyapunov equation.

3.2 Control parametrization

Let N ∈ N be a design parameter, relative
to which we define the time sequence tθ =
tθ(tθ0, N) , {tθi = tθ0 + i T

N
: i = 1, 2 . . . N}. Define

θ as a vector of length mN of the form

θ =





















θ1
1...

θ1
N...

θm
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θm
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where each θj is a vector of N parameters corre-
sponding to input uj . The control is then

u(t, x, tθ, θ) = α(x) + v(t, tθ, θ) (4)



where for each j ∈ {1, . . . m}

vj(t, t
θ, θ) =











θj
1 t ∈ [tθ0, tθ1]

θj
i t ∈ (tθi−1, tθi ], i = 2 . . . N

0 otherwise

(5)

Essentially, v(t, t0, θ) corresponds to a piecewise
constant (in time) parametrization of each of
the m control inputs. For every (t0, x0) initial
condition and (tθ, θ) control parametrization (in
general, t0 and tθ0 need not be equal) we de-
note the corresponding solution (in the classical
sense) to (1), (4), (5) by xp(t, t0, x0, t

θ
0, θ) and

up(t, t0, x0, t
θ
0, θ). At times we may condense this

notation to xp(t, ·), up(t, ·), when the omitted ar-
guments are obvious.

Since every x0 ∈ X̊ is assumed to admit an
input trajectory u(t) which is feasible with re-

spect to the open constraint sets (X̊, Ů, X̊f ), we
appeal to the recent literature on piecewise con-
stant control (see (Clarke and Stern, 2003) and
references therein) to claim without proof that
for N ≥ N∗(x0, T ) sufficiently large, there exists
a θ for which the solutions xp(t, t0, x0, t0, θ) and
up(t, t0, x0, t0, θ) satisfy all input, state and termi-
nal constraints. We define Θ ≡ Θ(x0, N) ⊆ R

mN

as the set of all such feasible θ, which we note is
an open set due to the openness of (X̊, Ů, X̊f ).

3.3 Overall Algorithm

For any given (t0, x0) ∈ R× X̊, we assume that an
initial feasible control parametrization (tθ, θ0) is
known, satisfying θ0 ∈ Θ(x0, N) and tθ0 = t0. For
the important case in which Xf = X (i.e. u = α(x)
is stabilizing over all of X), a natural initial choice
would be θ0 = 0.

For the interval t ∈ [t0, t1], with t1 = t0 + T
N

, we
modify (2) as

J(t, x, θ, tθ0) = W a(xp(tf , t, x, tθ0, θ)) (6)

+

∫ tf

t

La(xp(τ, t, x, tθ0, θ), u
p(τ, t, x, tθ0, θ))dτ

where the terminal time tf = t0 + T remains

constant in time. The vector θ in (6) is a state
of the controller, which is modified in continuous
time according to

θ̇ = −kθΓ∇θJ (7)

where kθ > 0 is a design parameter, and Γ =
Γ(t, θ) > 0 is a (time-varying) positive definite
matrix function, the design of which will be dis-
cussed in section 3.7. Calculation of ∇θJ is dis-
cussed in section 3.6.

At t = t1, the control parametrization (tθ, θ) is
“shifted” by the following jump map

(tθi )
+ =







tθi+1 i < N

tθN +
T

N
i = N

(8)

(θj
i )

+ =

{

θj
i+1 i < N

0 i = N
, j = 1, . . . m (9)

where the notation (tθ+, θ+) denotes the new
parametrization after the jump. If θ(t1)∈Θ(x0, N)
immediately prior to reset, then it follows from
(5),(9) and Assumption 2 that θ+ ∈Θ(x(t1), N).
The algorithm therefore repeats back to the be-
ginning, with (t0, x0, θ0) re-initialized as the post-
jump values (t1, x(t1), θ

+) from the previous iter-
ation. Since tf is defined relative to t0, the predic-
tion horizon therefore recedes in discrete jumps.

3.4 Existence and Uniqueness of Solutions

Since the controller state θ exhibits both contin-
uous flows as well as discrete jumps, the classical
notion of “solution” does not apply to the closed-
loop response. Instead, we will adopt a notion of
solution developed for hybrid systems.

Define ω = [z, xT , θT ]T , where z is the “time
since last reset” (ż = 1, z+ = 0), and define
the domains over which flow and jumps occur as
{ω |z ≤ T

N
} and {ω |z ≥ T

N
}, respectively. We can

then use the framework of (Goebel et al., 2004) to
state that solutions of the form ω(t, k) exist in the
sense of Filippov or Krasovskii, where t denotes
ordinary time (evolution along continuous flows),
while k denotes event time (evolution according
to jumps). Despite the apparent nondeterminism
at z = T

N
(i.e. both a flow and a jump are

defined), uniqueness of the solution follows from
the fact that the flow field ż = 1 points out of
the flow domain and into the interior of the jump
domain (Goebel et al., 2004). Finally, we point
out that by construction our hybrid dynamics are
incapable of multiple successive jumps at a single
moment in ordinary time, so zeno behaviour (i.e.
infinite jumps in finite ordinary time) is excluded
(Lygeros et al., 2003).

3.5 Main Result

Theorem 6. If α(x) satisfies Assumption 1, and
(x0, θ0) are a feasible, stabilizing set of initial
conditions for the selected (T,N), then stability
and feasibility are preserved under (7), (9).

PROOF. As is standard in MPC approaches,
we will prove stability by using the finite horizon
cost (6). However, since our closed loop trajectory
ω(t, k) evolves in the hybrid time domain, it will
be necessary to show decrease of J with respect to
both ordinary and event time. We will therefore



use the notation x(t, k), u(t, k), θ(t, k) to denote
the resulting solutions to (1), (4), (7), (9) in the
hybrid time domain.

Event time

At t = t1, we denote the change in J under the
jump mapping (and corresponding redefinition of
tf ) as ∆J(t1) = J(t1, x(t1, k +1), θ(t1, k +1)) −
J(t1, x(t1, k), θ(t1, k)). Since θ+

N = 0, it can be
seen that

∆J(t1) =

∫ tf(k+1)

tf(k)

La(xp, up)dτ

+ W a(x(tf (k))) − W a(x(tf (k+1)))

=

∫ tf(k+1)

tf(k)

La(xp, α(xp)) + ∇W aTfα(xp, 0)dτ

≤ 0 (10)

where the inequality follows from (3).

Ordinary time

We will use the notation J̇(k) to denote evolution
of J along continuous flows of the system for a

period of constant event-time k. Then

J̇(k) = ∇tJ + 〈∇xJ, fω(t, k))〉 + 〈∇θJ, θ̇〉

where fω(t, k) , fα(x(t, k), θ1(t, k)), and θ̇ is
given by (7). From (6) it can be shown that
∇tJ = 〈∇xJ, fω(t, k))〉 − La(x(t, k), u(t, k)), so

J̇k =−La(x(t, k), u(t, k)) + 〈∇θJ, θ̇〉

=−La(x(t, k), u(t, k))−kθ ∇θJ
T Γ(t)∇θJ

< 0. (11)

It then follows by a hybrid systems version of
LaSalle’s Invariance principle (Lygeros et al.,
2003) that the system converges asymptotically
to x = 0. Feasibility of x(t, k) and u(t, k) for
an initial feasible θ0 follows immediately from
(10),(11), and the unboundedness of J(t, x, θ, tθ0)
when a constraint is approached.

3.6 Calculation of ∇θJ

For notational simplicity, we define La
α(x, v) ,

La(x, α(x) + v). The gradient vector ∇θJ is then

∇θJ =

∫ tf

t

∂La
α

∂x

∂xp

∂θ
+

∂La
α

∂v

∂vp

∂θ
dτ +

dW a

dx

T∂xp

∂θ
(tf )

(12)

where
∂La

α

∂x
,

∂La
α

∂v
and dW a

dx
are evaluated along

xp(τ, ·), up(τ, ·) (and vp(τ, ·)), the simultaneously-
calculated prediction trajectory. The sensitivity
matrix has initial condition ∂xp/∂θ (t) = 0 and
evolves according to

d

dτ

∂xp

∂θ
=

∂fα

∂x

∂xp

∂θ
+

∂fα

∂v

∂vp

∂θ
(13)

In both (12) and (13), elements ∂vp
l /∂θj

i are given
by

∂vp
l

∂θj
i

=

{

1 l = j, and τ ∈ [tθi−1, tθi ]

0 otherwise

Instead of solving the (mN) sensitivity equations
of (13) on the entire prediction interval τ ∈ [t, tf ],
it is generally more efficient to decompose ∂xp/∂θ
on the interval [ti−1, ti] as

∂xp

∂θ
=

∂xp

∂xp(ti−1)

∂xp(ti−1)

∂θ
+

∂xp

∂vp

∂vp

∂θ
(14)

Since the intervals are solved sequentially, the
term ∂xp(ti−1)/∂θ is a known constant and thus
only the (m + n) sensitivities ∂xp/∂xp(ti−1) and
∂xp/∂vp need to be solved on τ ∈ [ti, ti+1]. The
term ∇θJ in (12) can be decomposed in a similar
fashion, so that only (m + n) elements require
integrating.

Most importantly, we note that several efficient
algorithms exist for simultaneously solving ODEs
and their parametric sensitivity equations. Ex-
amples include the packages ODESSA (Leis and
Kramer, 1988), DASPK (Li and Petzold, 2000),
or ESDIRK (Kristensen et al., 2004).

3.7 Selecting and Computing Γ

3.7.1. Steepest Descent The simplest approach
to selecting Γ is to fix it as the constant (diag-
onally scaled) identify matrix. The update law
(7) then becomes a steepest descent approach for
minimizing J with respect to θ. While simple to
implement, the poor scaling generally associated
with steepest descent may result in slow conver-
gence of θ towards any (locally) optimal control
parametrization.

3.7.2. Newton Method with Trust Region Max-
imum performance is achieved when Newton’s
method is used to generate Γ. Since the cost sur-
face J may not be convex in the parameter space,
it is necessary to modify the standard Newton’s
method using a trust-region approach to ensure
positive definiteness of Γ. This has the form

Γ =
[

∇2
θθJ +

(
∥

∥∇2
θθJ

∥

∥

F
+ ε

)

I
]−1

(15)

where ‖·‖F denotes the Frobenius matrix norm,
and ε > 0 is a small design constant.

Calculating the true Hessian ∇2
θθJ requires solv-

ing the second-order sensitivity equations analo-
gous to (13),(14). While generally computation-
ally expensive, it has been shown in (Guay and
McLean, 1995) that the same numerically efficient
methods for generating first order sensitivities can
be extended to the second order case as well.



3.7.3. Gauss-Newton Method If (6) can be

rewritten as J =
∫ tf

t
‖la(xp, up)‖

2
2 dτ +‖wa(xf )‖

2
2,

then a Gauss-Newton approximation

G = 2

∫ tf

t

L(τ)T
L(τ)dτ + W

T
W

L =
∂la

∂(x, v)







∂xp(τ)

∂θ
∂vp(τ)

∂θ






W =

∂wa

∂x

∂x

∂θ
(tf ),

can be substituted for ∇θθJ in (15). The dimen-
sion of the quadrature can again be reduced by
decomposing as in (14) and exploiting symmetry.
This is essentially a sequential application of the
Gauss-Newton method of (Diehl et al., 2002).

4. SIMULATION EXAMPLE

To illustrate the implementation of our approach,
we consider the problem of state-feedback regula-
tion of a jacketed non-isothermal reactor with van
de Vusse kinetics. The reaction mechanism is

A
k1GGGAB

k2GGGAC

2A
k3GGGAD

The states of the system consist of concentrations
of components A and B, as well as the temper-
atures T and TK occurring in the reactor and
cooling jacket, respectively. The manipulated vari-

ables consist of the dilution rate V̇
VR

and the rate
of heat removal from the jacket. All four states are
assumed to be measured, and evolve according to

ĊA =
V̇

VR

(CA0
− CA) − k1(T )CA − k3(T )C2

A

ĊB = −
V̇

VR

CB + k1(T )CA − k2(T )CB

Ṫ =
V̇

VR

(T0 − T ) +
kwAR

ρcpVR

(Tk − T )

−
1

ρcp

(k1(T )CA∆HRAB
+ k2(T )CB∆HRBC

+k3(T )C2
A∆HRAD

)

Ṫk =
1

mkcpk

(

Q̇k + kwAR (T − Tk)
)

where the rate constants ki(T ) follow the Ar-
rhenius law, and the values of all constants are
taken from (Chen et al., 1995). The steady state
to be regulated is xr = [CA, CB , T, Tk]r =
[2.14mol

L
, 1.09mol

L
, 114.2◦C, 112.9◦C] from initial

conditions (x0 + xr) = [1, 0.5, 100, 100]. The in-

puts are u = [ V̇
VR

, 1
100 Q̇k], where u2 is rescaled

for numerical considerations. At steady state,

[ V̇
VR

, Q̇k]r = [14.19hr−1, −1118kJ
hr

]. The inputs

are constrained by the hypercube 3 ≤ V̇
VR

≤

35hr−1 and −9000 ≤ Q̇k ≤ 0 kJ
hr

, which was
enforced using a logarithmic barrier for Bu.

The cost function is taken to be L(x, u) =
xT Qx + uT Ru, with diagonal matrices Q =
diag(0.2, 1, 0.5, 0.2) × 103 and R = diag(500, 5).
The terminal cost W = xT Px and local controller
α(x) = sat(Kx, U) are given by

K =

[

−0.0381 −0.0405 −0.1004 −0.0244
12.7532 6.2581 5.9558 3.6523

]

P =









70.1 36.6 20.1 6.4
36.6 33.6 9.9 3.1
20.1 9.9 10.6 3.0
6.4 3.1 3.0 1.8









where sat(·, U) denotes componentwise satura-
tion. Although α(x) is not necessarily globally
stabilizing, θ0 = 0 is still a feasible initial para-
metrization of v for the given x0.

Figure 1 depicts the closed-loop results for a con-
trol parameterization involving 30 intervals of 20
seconds each. A Gauss-Newton update law was
used, with an adaptation gain of kθ = 10. The
combination of continuous-time evolution and dis-
crete jumps are evident the input trajectories.
Figure 2 depicts the resulting dilution rate u1 and
accumulated cost for different values of kθ. The
trajectory labeled OPT represents the ideal MPC
input generated by instantaneous minimization
at the switching points. As kθ is increased, the
performance of our proposed method improves
from that of the nominal control u = α(x) (i.e.
kθ = 0) towards that of the ideal trajectory.

All calculations were performed on an Athlon 1.6
Ghz, using the Fortran package ODESSA in con-
junction with Matlab. Approximate computing
time (ms) per iteration (Matlab measurements,
not true CPU times) for different horizon lengths
involving 20s intervals were

No. Intervals 30 50 100
Steepest Descent <20ms <30ms <50ms
Gauss-Newton <50ms <80ms <500ms

We note that part of the Gauss-Newton calcu-
lation was performed in Matlab, which is less
efficient than an entirely Fortran implementation.

5. CONCLUSIONS

In this work an approach has been developed for
incorporating the optimization stage associated
with standard MPC into the controller design.
This allows for the control of faster processes,
by allowing the minimization to enter into the
same timescale as the process dynamics, rather
than requiring that it be completed within a faster
timescale. In effect, the results of the parameter
minimization are implemented as they are being
generated, rather than waiting for successful ter-
mination of the nonlinear program.



Stability and feasibility of the proposed method is
proven using slightly modified standard sufficient
conditions, and does not require any “sufficiently
fine” discretization of the input, other than to
assume the existence of a feasible initial parame-
terization. While the method only guarantees im-
provement of an initial feasible parameterization
up to a local minimum, this limitation is shared
by most other practical approaches.
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Fig. 1. Closed-loop time profiles using Gauss-
Newton parameter update, with kθ = 10.
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