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1. INTRODUCTION

The application of Intelligent Transportation Sys-

tems (ITS) makes the use of information technol-
ogy for the control of any transportation system
workable. In urban traffic networks, traffic sig-

nalling control is the major measure applied to
regulate vehicle flows. The relevant control strate-
gies typically consist in changing the intersection
stage specification, the relative green duration of
each stage, the intersection cycle time, and/or the
offset between cycles for successive intersections,
according to the time-varying behaviour of the
incoming traffic (Papageorgiou et al., 2003). The
traffic signalling control strategies are split into
fixed-time strategies and traffic-responsive strate-

gies. Fixed-time strategies consider a given time
of a day and determine the optimal splits (i.e.,
the optimal green durations), the optimal cycle
time, or even the optimal staging, based on his-
torical values of traffic demand in the consid-
ered area (e.g., TRANSYT (Robertson, 1969)).

Traffic-responsive strategies make use of real-
time measurements to compute the suitable signal
settings (e.g., SCOOT (Hunt et al., 1982), and
OPAC (Gartner, 1983)).

This paper describes a control strategy for the
optimization of the relative green duration of each
stage, assuming fixed, and a-priori known, the
stage specification. In doing so, a model of a
signalized urban traffic area, as composed of sig-
nalized intersections and roads, is used, which falls
in the class of microscopic traffic representations,
where each vehicle is distinctly modelled in the
traffic stream. As a matter of fact, a network of
traffic lights can be viewed as a complex discrete
event system, and then represented via timed
Petri nets (PN) (Murata, 1989; Di Febbraro and
Giglio, 2004). The above mentioned optimization
is accomplished by solving an algorithm which
contains a mathematical programming problem,
whose cost function minimizes the overall num-
ber of tokens in the timed PN representing the



signalized urban area, and whose constraints are
derived from the PN state equations. The consid-
ered decision variables are the area stages, that is,
the time intervals during which a given combina-
tion of green and red lights does not change in a
signalized area with several traffic signals.

The paper is organized as follows. The adopted
model of a signalized urban area is briefly intro-
duced in section 2, whereas its representation via
deterministic-timed PN is reported in section 3.
The control algorithm and the optimization prob-
lem are described in details in section 4. Conclu-
sions are reported in section 5.

2. THE MODEL OF THE SIGNALIZED
URBAN AREA

The proposed model of an urban area consists of
nI signalized intersections Ii, i = 1, . . . , nI , and
nR roads Rj , j = 1, . . . , nR. Each road is charac-
terized by its number of lanes sj and its capacity

cj , that is, the maximum number of vehicles which
can stay at once in the road itself. Eastbound
and westbound directions, as well as southbound
and northbound, are separately considered, that
is, each direction is modelled by a road. Also
road lanes are separately considered. Let Rj(k),
k = 1, . . . , sj , denote the k-th lane in road Rj .

Let IN(Ii) and OUT (Ii) be the sets of incoming

roads and outgoing roads, respectively, of intersec-
tion Ii. A turning rate value αj(k),l(h), with 0 ≤
αj(k),l(h) ≤ 1, is associated with each ordered pair
(Rj(k), Rl(h)), with Rj ∈ IN(Ii), k = 1, . . . , sj ,
and Rl ∈ OUT (Ii), h = 1, . . . , sl. Such a value
expresses the percentage of vehicles coming from
the k-th lane in road Rj , that is Rj(k), and going
to the h-th lane in road Rl, that is Rl(h). A
value αj(k),l(h) = 0 means that direction Rl(h) is
forbidden for vehicles coming from Rj(k), whereas
αj(k),l(h) = 1 represents a mandatory direction.
To guarantee the flow conservation, the condition

∑

l:Rl∈OUT (Ii)

sl
∑

h=1

αj(k),l(h) = 1 (1)

∀Rj ∈ IN(Ii), ∀ k = 1, . . . , sj , must always be
verified for any signalized intersection Ii.

In multi-lane roads, vehicles are allowed to change
lane according to the relevant traffic rules. Then,
it is necessary to know the percentages of vehicles
βj(k), with 0 ≤ βj(k) ≤ 1, which exit from road Rj

using lane Rj(k), k = 1, . . . , sj . Obviously, it must
be sj

∑

k=1

βj(k) = 1 (2)

∀Rj : sj > 1. Note that single-lane roads may be
viewed as multi-lane roads with sj = 1, and then
all the previous considerations hold for single-lane
roads, too. Examples of signalized intersections
and of roads are shown in Fig. 1.
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Fig. 1. An urban traffic area consisting of two
intersections and twelve roads.

In order to model the behaviour of vehicles when
crossing an intersection, the whole intersection
area is divided into a finite number of parts (cross-
ing sections), so as to take into account the phys-
ical space that a vehicle crossing the intersection
occupies (Di Febbraro et al., 2002a). Details of
such a modelling aspect are here omitted for the
sake of brevity, but it is worth noting that this
choice will allow to easily and efficiently manage
macroscopic entities (turning rates αj(k),l(h) and
percentages βj(k)) within a microscopic represen-
tation tool (the deterministic-timed PN). In any
case, the reader can refer to (Di Febbraro and
Giglio, 2004) for a detailed description of the
model and of the crossing sections.

A multi-stage traffic signal TSi is always associ-
ated with a signalized intersection. The number of
stages in its cycle depends on both the structure
of the intersection and the allowed flow directions.
In the following, the notation φi,p will be used to
indicate the p-th stage of the traffic signal TSi.

All traffic signals in the considered urban traffic
area are here managed at once. In this connection,
it is possible to determine the stage specification
for the whole area. Let it consist of F “area”

stages, namely ψf , f = 1, . . . , F . As an example,
consider again the urban traffic area represented
in Fig. 1. It consists of two intersections and
twelve roads. I1 is controlled by a three-stage
traffic signal (in stage φ1,1, vehicles in road lanes
R2(1) and R6(1) find a green light; in φ1,2, vehicles
in road lanes R2(2) and R6(2) find a green light;
in φ1,3, vehicles in road lanes R4(1) and R8(1)

find a green light), whereas I2 is controlled by
a two-stage traffic signal (in stage φ2,1, vehicles
in road lanes R5(1), R5(2), R11(1), and R11(2)

find a green light; in φ2,2, vehicles in road lane
R12(1) find a green light). A compatible whole area
stage specification, consisting of five area stages,
is represented in Fig. 2.

A very important aspect of the proposed model is
that the duration of each area stage is not fixed,
but constrained between a lower and an upper
bound. Then, it can change in order to differently
split the cycle, according to the traffic conditions.
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Fig. 2. A compatible stage specification for the
urban traffic area represented in Fig. 1.

On the contrary, the cycle time is assumed to
be constant and equal to C; then, the following
constraint must hold for any possible area stage
specification:

F
∑

f=1

ψf = C (3)

3. DETERMINISTIC-TIMED PETRI NETS
AND URBAN AREA REPRESENTATION

The described traffic model is microscopically
represented by means of timed Petri nets (TPNs),
with the purpose of providing a suitable modelling
tool for traffic management and control. In the
adopted TPN model, timings are associated with
transitions. The formal definition of the adopted
TPN model is given in the following.

Definition 1. A deterministic-timed Petri net

(DTPN) is a five-tuple {P, T, Pre, Post,D}, where
P is a finite non-empty set of n = card (P ) places,
namely p1, . . . , pn; T is a finite non-empty set of
m = card (T ) transitions, namely t1, . . . , tm; Pre
is a [n × m] matrix (the pre-incidence matrix)
whose element Prei,j is equal to w if an arc with
weight w joining pi and tj exists, and 0 other-
wise; Post is a [n×m] matrix (the post-incidence
matrix) whose element Posti,j is equal to 1 if an
arc with weight w joining tj and pi exists, and 0
otherwise; D : T → (R+)2 is a function which
associates a pair of non-negative real numbers,
namely dmin

j and dmax
j , dmax

j ≥ dmin
j , with each

transition in the net.

Definition 2. The marking Mi(τk) ≥ 0 is the
number of tokens which are within place pi ∈
P at time instant τk, k = 1, 2, . . .; M(τk) =
[Mi(τk), i = 1, . . . , n]T is the marking vector of
the DTPN; M(τ0) is the initial marking vector.

In a DTPN, a pair of deterministic firing times is
always associated with a transition of the net. dmin

j

represents the lower bound of the firing time of tj ,
whereas dmax

j is the upper bound. Transitions tj
such that dmax

j = dmin
j = 0 will be denoted in the

following as immediate transitions (graphically
represented by thin bars), whereas transitions
having dmin

j > 0 will be named timed transitions

(represented by boxes). Moreover, the firing time

of a transition may be fixed and a-priori specified
(in this case, dmax

j = dmin
j ), or not (dmax

j > dmin
j ).

The DTPN representation of a given urban traffic
system can be obtained by applying a suitable
synthesis procedure which analyzes an instance of
the urban traffic network model, and provides the
net representation fulfilling the network proper-
ties. Details of such a procedure are not reported
here, since the main objective of the paper is to
define a traffic-responsive control procedure.

The resulting DTPN can be viewed as the merging
of three distinct nets:

• the DTPNa, namely {P a, T a, P rea, Posta, Da},
representing signalized intersections and roads
(Fig. 4). Tokens within such a net model either
vehicles in the urban area or the availability
of intersection/road sections. Such a net only
includes immediate transitions or timed transi-
tions whose firing time is a-priori specified (that
is, dmax

j = dmin
j ∀tj ∈ T a), but presents sev-

eral conflicts necessary to model all the allowed
vehicle drivers’ behaviours in the area; Ma(τk)
denotes the marking vector of the DTPNa;

• the DTPNs, namely {P s, T s, P res, Posts,Ds},
representing the whole area staging (Fig. 3).
Such a net models the a-priori defined stage
specification of the urban area. It includes both
immediate and timed transitions, and all the
timed transitions have dmax

j > dmin
j , that is, the

firing time dj of each timed transition tj ∈ T s

ranges in the interval [dmin
j , dmax

j ], and thus has
to be specified through a suitable optimization
algorithm, as described in the following sec-
tion; M s(τk) denotes the marking vector of the
DTPNs;
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Fig. 3. The DTPNs representing traffic signal
phases.

• the ordinary PNc, namely {P c, T c, P rec, Postc},
representing macroscopic entities management.
In particular, such a net solves conflicts which
are in the DTPNa, according with percent-
ages α and β previously defined. This is ac-
complished by connecting certain places of the
PNc with certain conflicting transitions of the
DTPNa, thus preventing the firing of one be-
tween two conflicting transitions. The part of
such a PN, only including immediate transi-
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Fig. 4. The DTPNa representing signalized intersections and roads of the urban traffic area of Fig. 1.

tions, which solves the conflict between t14 and
t33 in Fig. 4 is represented in Fig. 5. M c(τk)
denotes the marking vector of the DTPNc.

t33 t14

p77

p84

p88 p89p85 p86 p87

t86 t87t85t84t83

p76

p83

p78 p79 p80 p81 p82

t78 t79 t80 t81 t82

Fig. 5. Structural solution of the conflict between
t14 and t33 of the DTPNa in Fig. 4.

The dynamics of the three DTPNs is expressed
by their state equations. As some immediate
transitions are shared between the DTPNa and
the DTPNs, and between the DTPNa and the
PNc, it is necessary to merge the three distinct
nets, and then writing the state equations for the
newly obtained overall deterministic-timed Petri
net, namely DTPNo= {P o, T o, P reo, Posto,Do}.
The procedure which merges the three nets is
quite simple (details of such a procedure are here
omitted for the sake of brevity).

The DTPN state equations can be written assum-
ing that the firing times of all timed transitions in
the net are integer numbers with reference to a
particular time unit δ (sampling interval). Such
an assumption introduces a certain degree of ap-
proximation in the representation of a real traffic
system. However, traffic signal plans are usually

defined adopting a time unit equal to one second,
and, moreover, the slow dynamics of urban traffic
systems does not seem to require a shorter time
unit. Then, it is reasonable to adopt a sampling
interval equal to one second (δ = 1s). The assump-
tion of integrity allows the analytic representation
of the DTPN system state evolution. The DTPN
system state, at a given (integer) time instant, is
represented by the joint information consisting of
both the marking of the net and the residual firing
times of firing timed transitions.

Definition 3. The residual firing time Θj(τk) ≥
0 is a vector containing the numbers of time

intervals which have to elapse until the end of
the firings of transition tj ∈ T , at time instant
τk, k = 1, 2, . . .; the generic element of Θj(τk) is
Θj,h(τk), with h = 1, . . . , bi, being bi the upper
bound (capacity) of input place pi of tj , that is,
i : p•i ≡ tj .

The above definition makes the firing of a timed
transition possible even if a firing is already oc-
curring in that transition. This is necessary in
the adopted DTPN representation of roads. It
is worth noting that, in the DTPN model, each
timed transition has one and only one input place,
and it is possible to prove that the input place
of each timed transition has finite capacity, that
is, the number of tokens which can be in that
place, whichever firing sequence occurs, is upper
bounded. Moreover, it is assumed Θj,h(τ0) = 0,
∀j ∈ {1, . . . ,m}, ∀h ∈ {1, . . . , bi}, that is, no
timed transition is firing at the initial time in-
stant. According with the previous definitions, the
state of a DTPN is given by



x(τk) =
[

Mi(τk), i = 1, . . . , n,Θj,h(τk),

j = 1, . . . ,m, h = 1, . . . , bi,

i : p•i ≡ tj
]

(4)

The state evolution takes place by considering al-
ternately zero-length time intervals, in which only
immediate transitions fire, and one-second-length

time intervals, in which only timed transitions
fire or “burn” one time unit of their firing (Di
Febbraro et al., 2002b). In particular, between
time instants τk and τk + δ the state evolves
according to the following two-step algorithm (in
the following, it will be assumed δ = 1s and τk

expressed in seconds as well).

Algorithm 1.

1.Zero-length phase. At τk, all the enabled im-
mediate transitions, if any, fire simultaneously
(this is possible since the DTPNo is conflict-

free, as all the conflicts which are in the DTPNa

are structurally solved by the PNc). The fir-
ing of an immediate transition may cause the
enabling of further transitions, which were ini-
tially not enabled at τk; then, the “zero-length”
time interval consists of some subsequent firings
of immediate transitions, all occurring at τk, in
the logical step r = 0, 1, 2, . . . This is ruled by
the following two equations:

Mo
i (τk, r + 1) = Mo

i (τk, r)+

+ ρT

i
· Co · σj(τk, r)

(5)

∀i : pi ∈ P o, where ρ
i

is a vector which selects
the i-th place of the net, and σj(τk, r) is a vector
whose j-th element is equal to 1 if immediate
transition tj ∈ T o is enabled, at τk, in logical
step r, and 0 otherwise, and whose p-th element,
p 6= j, is 0;

Θo
j (τk, r + 1) = Θo

j (τk, r) (6)

for any j : tj ∈ T o. Equations (5) and (6) are
initialized, ∀i : pi ∈ P o and ∀j : tj ∈ T o, by

Mo
i (τk, 0) = Mo

i (τk) (7)

Θo
j (τk, 0) = Θo

j (τk) (8)

However, it is very important to observe that,
whatever firing occurs, the system reaches a
marking in which no immediate transition is
enabled. This results from the absence in the
DTPNo of closed paths (“cycles”) which only
contain immediate transitions.

2.One-second-length phase. At τk, all the enabled
timed transitions, if any, fire simultaneously,
and all the timed transitions that are already
firing, if any, “burn” 1 second of their firing
times.

In the first case, the state of the net evolves
as follows:

Mo
i (τk + 1) = Mo

i (τk, R) (9)

∀i : pi ∈ P o;

Θo
j,h(τk + 1) = dj − 1 (10)

for any j such that timed transition tj ∈ T o

is enabled in marking Mo(τk, R) (the enabling
conditions of both immediate and timed tran-
sitions are here omitted), and h such that
Θo

j,h(τk, R) = 0 and Θo
j,h′(τk, R) > 0, ∀h′ =

1, . . . , h − 1.
In the second case, being tj ∈ T o the tran-

sition which is already firing, if there exists h
such that Θo

j,h(τk, R) = 1, then

Mo
i (τk + 1) = Mo

i (τk, R)+

+ ρT

i
· Co · σj(τk, R)

(11)

∀i : pi ∈ P o, else if Θo
j,h(τk, R) > 1 or

Θo
j,h(τk, R) = 0, ∀h = 1, . . . , bi, i : p•i ≡ tj ,

then
Mo

i (τk + 1) = Mo
i (τk, R) (12)

∀i : pi ∈ P o;

Θo
j,h(τk + 1) = Θo

j,h(τk, R) − 1 (13)

∀h ∈ {1, . . . , bi}, i : p•i ≡ tj , such that
Θo

j,h(τk, R) > 0.
Note that the condition Θo

j (τk, R) = 1 for
which (11) is defined means that the firing
transition will end its firing at the end of the
considered sampling period. For this reason,
tokens are removed from the input places of the
firing transition and inserted into the output
ones.

For any transition tj ∈ T o which is neither
enabled or already firing simply holds

Θo
j (τk + 1) = 0 (14)

4. OPTIMIZATION OF AREA STAGES

In the proposed model of an urban area, the
duration of area stages, as defined in section 2,
may vary according with traffic conditions. This
is modelled in the DTPN representation (and,
in particular, in the DTPNs) by deterministic-
timed transitions whose firing times may range
within a given interval. Then, the main object of
the paper is to provide an optimization algorithm
which determines the optimal stages (through the
determination of the optimal firing times in the
DTPNs), as described in the following.

phase

k−1 τ k τ k+1 τ k+2

solution
application

τ

cycle cycle cycle
(k+2)−th(k+1)−thk−th

input
parameter

count
phase

optimization
algorithm

computation
phase

optimal

Fig. 6. Schematization of the optimization of area
stages

Assume that the number of vehicles which enter
the considered area, in the time interval [τk−1, τk)



(k-th cycle), can be counted (through, for in-
stance, suitable counter devices such as electro-
magnetic induction loops and/or visual recogniz-
ers). This represents the input parameter count

phase (Fig. 6). Moreover, assume that the traffic
system dynamics is “slow” (such an hypothesis
is usually fulfilled by urban traffic systems), then
such a number can be considered to be an es-
timate of the number of the vehicles which will
enter the considered area in the subsequent time
interval, that is, in [τk, τk+1) ((k + 1)-th cycle).
Then, at τk, it is possible to set the firing time of
“input” (or “source”) transitions (in the proposed
DTPN representation, an input transition is a
timed transition having no incoming arcs, as t1,
t2, t6, t43, t44, and t45 in Fig. 4), so that the
number of tokens generated by their firings during
the time interval [τk, τk+1) is equal to the number
of counted vehicles during the interval [τk−1, τk).

The optimal area stages ψ◦

k,f , f = 1, . . . , F , are
determined in the time interval [τk, τk+1) through
the solution of an optimization problem whose
objective function minimizes the number of tokens
within the net (note that, as the numbers of tokens
within the DTPNs and the PNc are constant, it is
sufficient to minimize the number of tokens within
the DTPNa), by optimizing the firing times of the
timed transitions of the DTPNs. This corresponds
to minimize the number of vehicles which are in
the area at the end of the considered time interval,
that is, at τk+1, by suitably setting the length of
stages. The objective function is subject to the
cycle length constraint (3) and to the DTPNs
dynamic equations provided by (5)÷(14), and ini-
tialized by the marking vectors Ma(τk), M s(τk),
and M c(τk). This represents the optimization al-

gorithm computation phase. Then, the computed
optimal area stages are applied to the real system
from time τk+1, that is, within the (k + 2)-th
semaphoric cycle, which is the optimal solution

application phase. The whole procedure can be
summarized as follows.

Algorithm 2.

1.Within the time interval [τk−1, τk), count the
number of vehicles entering the area from road
lane Rp(q), for any p such that Rp ∈ IN(Is),
s = 1, . . . , nI , and Rp /∈ OUT (It), t = 1, . . . , nI ,
t 6= s, and for any q = 1, . . . , sp. Let σp(q) be
the number of counted vehicles.

2.At time τk, set dmax
j = dmin

j = b C
σp(q)

c, being j

such that tj ∈ T a represents road lane Rp(q).
3.Within the time interval [τk, τk+1), compute

ψ◦

k,f , f = 1, . . . , F , by solving

min
dj

j : tj∈T s,dmin
j >0

∑

i∈P a

Ma
i (τk+1) (15)

subject to

∑

j : tj∈T s,dmin
j

>0

dj = C (16)

Ma
i (τk+1) = G

(

DTPNa,Ma(τk),

DTPNs,M s(τk),

PNc,M c(τk)
)

(17)

where G represents a structured procedure
which carries out the dynamic evolution of the
net, i.e., executes the “token game”. In partic-
ular, the equations implemented in G are those
described by (5)÷(14) in Algorithm 1.

4.At time τk+1, set ψk+1,f = ψ◦

k,f , f = 1, . . . , F .

5. CONCLUSIONS

In this paper, an algorithm for the optimization
of traffic signal stages, within urban areas, has
been introduced and discussed. It is worth noting
that the adopted PN representation can be viewed
as a set of interconnected “smaller” nets, each of
them representing a particular intersection or a
particular road. Such a modularity is very appre-
ciated when building large nets representing wide
urban areas. The proposed model as well as the
optimization of the area stages are being tested
in a real traffic area in the city of Genova, North-
West of Italy.
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