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Abstract: A challenging problem that motivates this work is the network delay
effects in residual computation. Residuals are assumed to be identically zero in
fault-free situations whereas deviations from zero alert the presence of fault in
the system. In practice residuals are not identically zero due to various factors
(measurements noises, modelling uncertainties, delays, and so on). This work is
focused on the study of the availability of data, due to delays in the communication
network, to compute residuals. An optimal dynamic alignment of data in a time
window (Dynamic Time Warping) is proposed and tested to reduce errors when
computing residuals. Copyright c©2005 IFAC
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1. INTRODUCTION

All model-based FDI methods: diagnostic ob-
server (Gertler, 1988), parity space (Isermann,
1993), parameter estimation (Frank et al., 2000)
and structural analysis (Blanke et al., 2003), re-
quire two steps. In the first step inconsistencies
between the actual and expected behavior are
generated. Such inconsistencies, also called resid-
uals, reflect the potential faults of the system. The
second step applies a decision rule for diagnosis.

The check for inconsistency needs some form of
redundancy. There are two types of redundancies,
hardware or physical redundancy and analytical
redundancy. Hardware redundancy requires re-
dundant sensors. It has been applied in nuclear
power plant monitoring, aircraft and other safety

applications which can justify its high costs and
dimension. On the other hand, analytical redun-
dancy is achieved from the functional dependence
among the process variables and is usually pro-
vided by a set of algebraic or temporal relation-
ships among state, input and the output (Blanke
et al., 2003). The essence of analytical redundancy
is to check the actual system behavior against the
system model for consistency. Any inconsistency,
expressed as residuals, can be used for fault de-
tection and isolation purposes.

Residuals are ideally zero in the fault-free case
and different from zero, in the faulty case. In
practice residuals are not identically zero, due to
various imprecision sources (presence of noise in
the measurements, modelling uncertainties and
delays). A challenging problem that motivates



this work is the effect of communication network
delays in the computation of residuals.

Indeed, automated systems are more and more
complex and spatially distributed, and commu-
nication networks have become the backbone of
most control architecture. As the systems are re-
quired to be more scalable and flexible, they have
more sensors, actuators and controllers, often re-
ferred to as field devices (Lee et al., 2001; Willing
and Wolisz, 2001). Connecting the system compo-
nents via a communication network such as CAN
(Controller Area Network) or PROFIBUS can ef-
fectively reduce the complexity of the system. In
this work a PROFIBUS network has been used to
study communication delays as potential sources
of error in residual computation.

Following this analysis it is proposed to use a
Dynamic Time Warping (DTW) algorithm (Sakoe
and Chiba, 1978; Silverman and Morgan, 1990)
for reducing time misalignment with measures and
improving residual computation.

The paper is structured as follows: Section 2 il-
lustrates potential sources of time delays in a
PROFIBUS network. In section 3, Dynamic Time
Warping (DTW) algorithm is summarized and a
modification for on-line application is proposed.
Section 4 makes an analysis of communication
delays in a laboratory plant. Section 5 presents
the use of DTW for improving residual computa-
tion. Finally, section 6 discusses further work and
presents some concluding remarks.

2. DELAYS AND MISALIGNMENTS
AFFECTING RESIDUAL COMPUTATION

PROFIBUS is a Fieldbus designed for serial com-
munication between field devices (sensors, actua-
tors, controllers, I/O terminals), PLCs and com-
puters. Based on a real-time asynchronous token
bus principle, PROFIBUS defines multi-master
and master-slave communication relations, with
cyclic or acyclic access, allowing transfer rates up
to 500 kbit/s.

Figure 1 represents a typical PROFIBUS network,
composed of several controllers, input/output
cards and a computer acting as an OPC (OLE for
process control) server operating in an Ethernet
network. An OPC-client computer performs the
monitoring and FDI (Fault Detection and Isola-
tion) tasks. This schema has been used in the
example reported in section 4.

PROFIBUS interface modules transmit signal val-
ues, coming from the I/O card and controllers to
the OPC server, where a timestamp is assigned.
The access to process data is performed by su-
pervisory applications also under a client-server
strategy with this OPC-server.

Network and bus performances related to speed,
availability of devices and parameter configura-
tion of the field bus, location of sensors, conversion
speed, sample or actualization rates and so on
are factors than can influence the computation of
redundancy equations in a real application. Some
of these aspects have been intensively addressed
in the literature as real-time control problems
(resources assignment, scheduling) but they are
still unsolved to cope with FDI tasks.

Potential sources of time delay or asynchronous
availability of data are:

• Different time response among sensors. For
example, pH-meters, temperature sensors or
flowmeters have different time constants.
This time delay is intrinsic to the measure-
ment process and usually is not taken into
account in redundancy relations.

• Field-bus communications. Maximum speed
(bit rate) is commonly limited by the length
of the bus. Moreover, they have additional
limitations due to the token based commu-
nication, availability and number of devices
in the bus and parameter configuration. In
Profibus the major time delay is bounded and
results from the server update cycle called
TTR Target Rotation Time (Vitturi, 2000).
It can vary according to technology.

• Analogue to digital conversion. Converters
speed is not a real limitation. Nevertheless,
some multichannel devices with a great num-
ber of multiplexed inputs could show signifi-
cant limitations for applications operating at
high sample rates.

• Synchronous availability of data in remote
applications. There is not a certainty that
OPC server can respond to synchronic peti-
tions of clients with the same periodicity. In
fact OPC server serves the last stamped data.
This can cause the reception of repetitive
data in a short period of time or misalign-
ments in multiple-synchronous petitions.

Table 1 summarizes typical time delays (Trevelyan,
2004). In this work it has particulary been con-
sidered the time delay resulting from the server
update.
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Fig. 1. Data network delays in control systems



Table 1. Typical time delays.

A/D Conversion 1 µs (1MHz sampling rate)
to 10 ms (1kHz sampling rate)

Memory access 0.1-10 µs (depending on
bus traffic, memory access delay

O.S. latency 5-50 µs (real time O.S.)
1-50 ms (Windows)

Commun. latency 1 ms (local LAN) to
(Ethernet) 1 s (between continents )
OPC server update 1 -2 s

In order to cope with misalignments and delays
when operating with multiple sensors to compute
analytical redundancy relations for fault detec-
tion, a dynamic time warping algorithm is pro-
posed. It operates on a time window instead of a
single sample time in order to minimize the global
distance of misaligned points of two sequences
acquired during this time window. This algorithm
has been modified and implemented to operate on-
line in a sliding window as described in the next
section.

3. DYNAMIC TIME WARPING

There are numerous studies applied to time series
that have been carried out in order to compare
and classify similar patterns by means of a simi-
larity measure. Most algorithms that operate with
data time series use the Euclidean distance or
some variant. However, Euclidean distance could
produce an incorrect similarity measure because
it is very sensitive to small distortions in the
time axis. Dynamic Time Warping (DTW) tries
to solve this inconvenient. It uses dynamic pro-
gramming (Sakoe and Chiba, 1978; Silverman and
Morgan, 1990) to align time series with a given
template so that the total distance measure is
minimized (figure 2). DTW has been widely used
in word recognition to compensate the temporal
distortions related to different speeds of speech.
Also, it is a good method to determine the similar-
ity between two temporal sequences due to its ca-
pacity to align sequences with different length. It
has been also applied for pattern recognition with
both numerical or qualitative sequences (Colomer
et al., 2002).

Next, a brief notion of DTW is described. Given
two time series X and Y , of length m and n
respectively

X = x1, x2, ..., xi, ..., xm (1)

Y = y1, y2, ..., yj , ..., yn (2)

DTW will align the two sequences by finding a
sequence W of k points in a m-by-n matrix where
every element (i, j) of the matrix contains the
local distance d(xi, yj) between the points xi and
yj . This is illustrated in figure 3. The path W is a
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(b)
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(a)

Fig. 2. Two signals with similar shape. a) Eu-
clidean distance b)DTW

contiguous set of matrix elements that minimize
the distance between the two sequences.

W = w1, w2, ..., wk max(m,n) ≤ k ≤ m + n

wk = [ik, jk] (3)

where ik and jk denote the time index of trajec-
tories X and Y respectively. In order to find the
best path W , some constraints are widely used to
speed up DTW (Sakoe and Chiba, 1978).

The path is extracted by evaluating the cumu-
lative distance D(i, j) as the sum of the local
distance d(xi, yj) in the current cell and the min-
imum of the cumulative distances in the previous
cells. This can be expressed as:

D(i, j) = d(xi, yj) + min[D(i− 1, j − 1),

D(i− 1, j), D(i, j − 1)] (4)

3.1 On-line DTW

Since DTW is a good method to compensate tem-
poral distortions due to communication delays,
this paper proposes a slight modification of the
algorithm in order to adapt it for on-line appli-
cation. As main particularities, the two sequences

1 i m
1

j

n

Fig. 3. An example warping path.
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Fig. 4. On-line DTW.

have got the same length and the new algorithm
returns a distance value at every sample time.
So, it is necessary to obtain a finite sequence
from original data to calculate new distances. The
algorithm starts at time 2 calculating the local
distances for the squared matrix. Later on, the
matrix grows up and only local distances for new
cells in the matrix are calculated. Next, the matrix
reaches a maximum value established according
to the process dynamics and it becomes a sliding
window. At each sample time oldest cells in the
matrix are deleted and local distances are calcu-
lated for empty cells corresponding to the new
sample (figure 4). A new path must be found for
each window and the distance value is obtained
calculating the total distance according to this
new path.

3.2 Time consuming

Table 2 resumes the time consuming compari-
son of two sequences. Algorithms implementation
were done in a 2.4 GHz Pentium 4 with 512 MB of
RAM. What is time consuming in both algorithms
is the local distances matrix calculation. On-line
DTW is faster than DTW because the first one
uses previous calculated values.

Table 2. Time consuming comparison
between DTW and On-line DTW

Distance Samples Local dist. time Path time
measure number

DTW 50 1.1 s 1 ms
On-line DTW 50 20 ms 1 ms

Important factors to be considered is the window
size because it could produce a filtering effect.

4. ANALYSIS OF COMMUNICATION
DELAYS IN A LABORATORY PLANT

To illustrate these problems associated with the
existence of asynchronous delays in the communi-
cation, a laboratory plant has been used. Dynamic
time warping strategy has been compared with
traditional approach for residual computation.

Fig. 5. The laboratory plant.

4.1 Description of the system

The plant of figure 5 provides a constant output
flow of tank labelled as TANK 2 due to the control
of level in this tank performed by the operation
of valves V9 and V10. On the other hand levels
in TANK 1 and TANK 3 are regulated by pumps
and by PID controllers. Measurements available
from the process through Profibus are levels (h1

-not used in this experiment-, h2 and h3), pump
control signals, and the input flow into TANK 3
(QP ).

4.2 Process communication delays

A PID controller and an I/O card are connected
(via PROFIBUS in master-slave communication
relations) to an OPC sever. The time server up-
date cycle (Time Rotation Time) is 137ms. The
OPC client application has been implemented in
a remote PC connected via Ethernet to the OPC
server. Schema depicted in figure 1 has been used.

The availability of data in the OPC-client com-
puter has been tested under different conditions
of refreshing time (Sample time) and number of
devices.

Figure 6a) represents the histograms of a signal
delays acquired with a sample time of 100ms.
Delays were calculated as the difference between
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Fig. 6. Histogram of samples delay a)Ts=100ms
b)Ts=1000ms.



timestamps labelled by the OPC server. Samples
located close to zero denotes repeated data, which
means that the server did not have time to update
the value. Samples around 100ms represent data
arriving on time and samples on the right of the
histogram indicate delayed data.

While for histogram of figure 6b), delays are in-
significant compared to the sample time (1000ms).
In that situation is guaranteed that the refreshing
time in the OPC-client computer will coincide
with OPC server updates.

It can be concluded that sample time and times-
tamp not are always coincident and obviously
delays and misalignments increase as sample time
decreases nearly to the target rotation time. In
order to emphasize this source of errors residual
computation has been evaluated under these cir-
cumstances.

5. DTW FOR IMPROVING RESIDUAL
COMPUTATION

According to the design of analytical redundancy
relations ARR, that is explained in appendix A,
there are three residuals that can be computed
for the example described in section 4 (figure 5).
This expressions must be evaluated at anytime
with values of process variables acquired at the
same time. Typically a sampling time is defined
to evaluate periodically the consistency of data
coming from process. This periodicity also facil-
itates the computation of derivatives involved in
the relations, i.e. ARR2 (eq. A.13). Derivative cal-
culation is done by subtracting the output value
at the previous time step from the current value,
and dividing by the sample time.

In order to see how misalignments affect residual
ARR2, a sample rate of 100ms has been fixed as
a periodic interval to compute the redundancy
equations. Decision thresholds have been deter-
mined as x̄±3σ, where x̄ is the mean and σ is the
standard deviation.

Figure 7a) depicts the implementation of eq.A.13
and it can be seen some values that cross the
thresholds, which might lead to false alarms.

DTW has to be applied to a couple of signals,
for this reason ARR2 was divided in two signals:
(Q32) representing the flow between TANK 2 and
TANK 3, and the difference between the out put
flow (QN ) and the level variation in TANK 2,
that is (QN − Aḣ2). In that way ARR2 can be
computed as follows:

DTW (Q32, QN −Aḣ2) = 0 (5)

0 5 10 15

x 10
4

−0.4

−0.2

0

0.2

0.4

a)     ms

0 5 10 15

x 10
4

−0.01

−0.005

0

0.005

0.01

0.015

b)     ms

Fig. 7. ARR2: a)eq.A.13 and b)DTW on-line
computation.

Figure 7b) shows how DTW reduces the number
of false alarms. The window size has been config-
ured in 40 samples.

6. CONCLUSIONS AND FURTHER WORK

In this paper, an approach based on classic DTW
was developed to be used online in order to obtain
residuals from a laboratory plant. This approach
is specially suitable for those errors related with
time distortions. Therefore, it will be useful for
distributed systems with communication delays
and for hybrid systems with on/off sensors or
actuators causing misalignments between real and
simulated signals.

The results show a hight robustness for on-line
DTW. In fact, the results obtained evidenced less
false alarms using on-line DTW than a normal
implementation.

As restrictions, the new approach continues using
dynamic programming and it could be compu-
tationally expensive depending on considerations
as number of variables, sample time or computer
effort.
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Appendix A. DESIGN OF ANALYTICAL
REDUNDANCY RELATIONS

Valves V9 and V10 are located 13cm and 7.5cm,
respectively, from the bottom of thanks. Depend-
ing on the water levels there exist several different
operation modes for the system. As a practical
example, level in TANK 3 has been maintained
in 20cm and TANK 2 in 9cm. Next equations
describe the operation mode for the system:

c1 : QL = 0 (A.1)

c2 : QP = u(t).Q̄P (A.2)

c3 : ḣ3 =
1
A

(QP −QL −Q32) (A.3)

d4 : ḣ3 =
d

dt
h3 (A.4)

c5 : Q32 = k1

√
|h3 − 13|+ k2

√
|h3 − h2|(A.5)

d6 : ḣ2 =
d

dt
h2 (A.6)

c7 : ḣ2 =
1
A

(Q32 −QN ) (A.7)

c8 : QN = k3

√
h2 (A.8)

m1 : h3 = h3,m1 (A.9)

m2 : h2 = h2,m2 (A.10)

m3 : QP = QP,m3 (A.11)

where Q32 is the flow between tanks, QN is the
output flow of the TANK 2, Qp is the input flow
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Fig. A.1. Oriented structure graph of the tanks
system.

into TANK 3 and QL appears when a leakage
in TANK 3 occurs. A, k1, k2 and k3 are known
parameters. m1, m2 and m3 are additional mea-
surement constraints.

Redundancy relations have been obtained from
the following matching table (table A.1) using
the ranking algorithm described in (Blanke et
al., 2003). The corresponding oriented graph is
shown in figure A.1.

Table A.1. Incidence matrix.

↗ QL QP ḣ3 h3 Q32 ḣ2 h2 QN

c1 1©
c2 1
c3 1 1 1 1
d4 1© 1
c5 1 1© 1
d6 1© 1
c7 1 1 1
c8 1 1©
m1 1©
m2 1©
m3 1©

Simplifying the operation model equations using
the matched variables results in the following
redundancy relations:

ARR 1:

QP,m3 − k1

√
h3 − 13− k2

√
h3 − h2 − Aḣ3 = 0(A.12)

ARR 2:

k1

√
h3 − 13 + k2

√
h3 − h2 − k3

√
h2 − Aḣ2 = 0(A.13)

ARR 3:

u(t).Q̄P −QP,m3 = 0 (A.14)


