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1. INTRODUCTION

Electromagnetic actuators are a particularly effective
and reliable technology for the attitude control of
small satellites. Such actuators operate on the basis of
the interaction between the magnetic field generated
by a set of three orthogonal, current-driven coils and
the magnetic field of the Earth and therefore provide
a very simple solution to the problem of generating
torques on board of a satellite. More precisely, mag-
netic torquers can be used either as main actuators
for attitude control in momentum biased or gravity
gradient attitude control architectures or as secondary
actuators for momentum management tasks in zero
momentum reaction wheel based configurations.

The use of electromagnetic actuators, however, gives
rise to a number of difficulties when it comes to con-
trol system design. The torques which can be gen-
erated in this way are instantaneously constrained to
lie in the plane orthogonal to the local magnetic field

vector. In spite of this constraint, controllability of the
attitude dynamics is ensured for a wide range of orbit
altitudes and inclinations thanks to the variability of
the geomagnetic field. However, the control designer
is faced with the task of working out a suitable time-
varying control law to deal with such effects. In recent
years, a considerable effort has been devoted to the
analysis of this control problem (see, e.g., (Arduini
and Baiocco, 1997; Wisniewski and Blanke, 1999));
in particular, as the variability of the geomagnetic
field is almost time-periodic, most of the recent work
on the linear attitude control problem has focused on
the use of optimal and robust periodic control theory
for the design of state and output feedback regulators
(Pittelkau, 1993; Varga and Pieters, 1998; Wisniewski
and Markley, 1999; Lovera et al., 2002; Psiaki, 2001;
Lovera, 2001). See also (Silani and Lovera, 2005) for
a recent survey on this subject. However, in spite of
the extensive activity, the development of a design
technique leading to a simple, easily implementable,
yet efficient controller remains an open problem.



The aim of this paper is to propose and compare a
number of different approaches to the design of digital
attitude controllers for spacecraft equipped with mag-
netic actuators, with specific emphasis on practical as-
pects associated with their on-board implementation.
In particular, the results obtained using periodic opti-
mal state feedback and predictive state feedback con-
trol are compared with the ones provided by a novel
approach to the tuning of a classical fixed structure
controller for magnetic attitude control known as the
”projection based” controller.

It is important to note that the design problems as-
sociated with periodic optimisation techniques pose a
significant challenge from the numerical point of view
(unstable open loop dynamics and very large period)
and could be only solved by using reliable numerical
methods as those implemented in the Periodic Sys-
tems Toolbox for Matlab (Varga, 2005b).

2. SPACECRAFT MODEL

For the purpose of the present analysis, the following
coordinate systems are adopted:

• Yaw-Roll-Pitch (orbital) reference frame. The
origin of this coordinate frame is in the satellite
centre of mass. The X-axis is defined as the
vector pointing towards the Earth’s centre and
positive in the same direction. The Y-axis points
in the direction of the orbital velocity vector. The
Z-axis is normal to the satellite orbit plane and
completes the right-handed orthogonal triad.

• Satellite body reference frame. The origin of this
coordinate frame axes is in the satellite centre of
mass; the axes are assumed to coincide with the
body’s principal inertia axes.

As is well known (Wertz, 1978), the attitude matrix
A(q) with respect to the orbital axes can be expressed
as a function of the (unit norm) quaternion vector
q =

[
q1 q2 q3 q4

]T :=
[
qT
R q4

]T ∈ R4 and the
time evolution of the attitude parameters as a function
of the angular rate ωr of the spacecraft relative to
a desired reference frame can be described by the
kinematic equations

q̇ =
1
2
W (ωr)q (1)

where W (ωr) depends on the components of ωr as

W (ωr) =




0 ωrz −ωry ωrx

−ωrz 0 ωrx ωry

ωry −ωrx 0 ωrz

−ωrx −ωry −ωrz 0


 .

For Earth pointing spacecraft (on circular orbits)
one spontaneously considers the orbital coordinate
frame as an attitude reference, so that ωr = ω −
A(q)

[
0 0 −Ω0

]T , where Ω0 is the orbital angular
rate and ω is angular rate of the body reference frame.

The equations of angular dynamics (Wertz, 1978; Sidi,
1997) can be expressed in vector form as

dh

dt
= T (2)

where h ∈ R3 is the overall angular momentum
of the spacecraft and T is the sum of the external
torques (disturbance and control ones) acting on the
satellite. The derivative of h is here expressed in
an inertial reference frame. Considering instead the
body reference frame, rotating with angular rate ω, the
Euler’s equations become

ḣ = −ω × h + T. (3)

For a rigid spacecraft h = Iω, where I ∈ R3×3 is the
spacecraft inertia matrix expressed in body frame, so
Euler’s equations reduce to the well known form

Iω̇ = −ω × Iω + T = S(ω)Iω + T,

where S(ω) is given by

S(ω) =




0 ωz −ωy

−ωz 0 ωx

ωy −ωx 0


 . (4)

In this paper we consider the case of a momentum
biased satellite, i.e., a spacecraft equipped with one
momentum wheel, aligned with the z body axis. The
wheel is characterised by a moment of inertia matrix J
and a velocity vector Ω relative to the body frame, and
therefore an angular momentum hw = [ 0 0 JΩ ]T .
We have that h = Iω + hw and therefore (3) becomes

Iω̇ + ḣw = S(ω)[Iω + hw] + T. (5)

It will be assumed in the following that the angular
velocity of the momentum wheel is kept constant to
a nominal value Ω, so that we have ḣw = 0 and hw

constant in equation (5). Note that the external torque
T appearing in equation (2) can be decomposed into
the sum of three terms, namely the gravity gradient
torque Tgg(which will be included in the linearized
dynamics), the magnetic control torque Tc,mag (i.e.,
the control torque generated by the magnetic coils)
and the sum of disturbance torques Tc,dist.

In particular, disturbance torques due to gravity gra-
dient are taken into account in the spacecraft dy-
namics as they have an important effect in deter-
mining the stability characteristics of the equilibria
of relative motion for Earth pointing spacecraft (see
(Hughes, 1986)). Such torques are given by

Tgg = 3Ω2
0z × Iz (6)

where z ∈ R3 is the local zenith direction in body
axes. For example, in the case of an Earth pointing
satellite one has

z = A(q)
[−1 0 0

]T
. (7)

Finally, the control torques generated by the magnetic
coils are given by the expression:

Tc,mag = mc × b = S(b)mc (8)



with S(·) as defined in (4) and where the vector
b ∈ R3 is formed with the components of geomag-
netic field vector with respect to the body frame, and
mc ∈ R3 is the vector of the coils’ magnetic dipoles.
According to equation (8) the control torque of the
magnetically controlled satellite is constrained to be
orthogonal to the local direction of the geomagnetic
field vector. This also implies that the component of
the magnetic moment in the direction parallel to the
local geomagnetic field has no influence on the satel-
lite motion. Note that even if S(b) is structurally sin-
gular, ”average” controllability (i.e., controllability in
the time-varying sense) is guaranteed for most orbits
of practical interest thanks to the variability of b.

In this study we consider a spacecraft such that I =
diag

[
Ixx Iyy Izz

]
, equipped with a single momen-

tum/reaction wheel aligned with the body z axis, with
moment of inertia J and angular velocity Ω relative
to the body frame. For this spacecraft configuration
the aim of the attitude control scheme is to maintain
the spacecraft (body axes) aligned with the orbital
axes, while exploiting the gyroscopic effect due to
the momentum wheel. In the following we will derive
linearised dynamic models for the formulation of this
control problem.

Define the state vector xc = [δqT
R δωT ]T formed

with small displacements of the vector part qR of the
attitude quaternion with respect to the orbital axes
from the nominal values q̄R =

[
0 0 0

]T and small
deviations of the body rates from the nominal values
ωx = ωy = 0, ωz = −Ω0. Then the attitude dynamics
can be linearized and the local linear dynamics for the
attitude can be defined as

ẋc(t) = Acxc(t) + BcT [Tc,mag(t) + Tc,dist(t)] (9)

or

ẋc(t) = Acxc(t)+Bcm(t)mc(t)+BcT Tc,dist(t) (10)

where

Ac =




0 −Ω0 0 0.5 0 0
Ω0 0 0 0 0.5 0
0 0 0 0 0 0.5
0 0 0 0 Wx 0
0 −6kyΩ2

0 0 Wy 0 0
0 0 +6kzΩ2

0 0 0 0




BcT =




0 0 0
0 0 0
0 0 0

I−1
xx 0 0
0 I−1

yy 0
0 0 I−1

zz




, Bcm(t) = BcT S(b(t))

and kx = Iyy−Izz

Ixx
, ky = Izz−Ixx

Iyy
, kz = Ixx−Iyy

Izz
,

Wx = −kxΩ0 − kwxΩ, Wy = −kyΩ0 + kwyΩ,
kwx = J

Ixx
, kwy = J

Iyy
. Here, Ω is the nominal wheel

speed.

Note that two different control matrices BcT and
Bcm(t) have been defined, in order to handle prob-

lem formulations in which either magnetic torques
(Tc,mag) or magnetic dipoles (mc) are used as control
variables, respectively. Therefore, while Ac is con-
stant, the control matrix Bcm(t) corresponding to the
control input mc turns out to be time-varying (and
approximately time-periodic with period 2π/Ω0) be-
cause of the dependence on b(t).

Finally, since we are concerned with a discrete-time
design problem, suitable discrete-time equivalents of
(9) and (10) have been derived, in the forms

x(k + 1)= Ax(k) + BT [Tmag(k)+ Tdist(k)] (11)
x(k + 1)= Ax(k) + Bm(k)m(k)+ BT Tdist(k) (12)

respectively, where for a sampling-time of ∆ =
2π/(NΩ0) (N is the discrete-time period) we have:
A := exp(Ac∆), BT :=

∫ ∆

0
eAc(∆−τ)BcT dτ ,

Bm(k) :=
∫ (k+1)∆

k∆
eAc[(k+1)∆−τ ]Bcm(τ)dτ , x(k) :=

xc(k∆), Tmag(k) := Tc,mag(k∆), Tdist(k) :=
Tc,dist(k∆), and m(k) := mc(k∆).

3. CONTROLLER DESIGN

3.1 Periodic optimal state feedback controller

Consider the system (12) and let u(k) = m(k).
Minimizing the linear-quadratic (LQ) criterion

J =
∞∑

k=0

[
x(k)T Qx(k) + u(k)T Ru(k)

]
(13)

where Q ≥ 0, R > 0 are symmetric matrices, is
an attractive method to determine stabilizing periodic
state feedback controllers of the form

u(k) = F (k)x(k) (14)

The optimal N -periodic state-feedback matrix F (k)
minimizing the performance index (13) is given by

F (k) = −(R + BT
m(k)X(k + 1)Bm(k))−1

·BT
m(k)X(k + 1)A

where the N -periodic symmetric positive semi-definite
matrix X(k) satisfies the reverse discrete-time peri-
odic Riccati equation

X(k) = Q + AT X(k + 1)A

−AT X(k+1)Bm(k)(R+BT
m(k)X(k+1)Bm(k))−1

·BT
m(k)X(k + 1)A

This periodic Riccati equation can be solved using the
algorithm proposed in (Varga, 2005a) implemented in
the Periodic Systems Toolbox (Varga, 2005b).

The optimal periodic LQ approach has the obvious
advantage of providing a controller with a very good
level of performance. This is the reason why opti-
mal periodic control has been extensively studied as
a viable approach to this problem, in a number of
different settings and formulations: continuous-time
in (Pittelkau, 1993; Wisniewski and Markley, 1999;



Lovera et al., 2002; Lovera, 2001) and discrete-time
in (Wisniewski and Stoustrup, 2002). The issues as-
sociated with the implementation of optimal periodic
controllers, however, make their actual application in
real satellite missions not very likely: the storage re-
quirements for a fully time-periodic gain are indeed
a critical problem. While these issues motivate the
interest in alternative approaches to this design prob-
lem, the performance level provided by the optimal
periodic LQ controller can be taken as a reference for
all other approaches.

3.2 Predictive magnetic controller

Consider now system (11), and let u(k) = Tmag(k).
The optimal j-ahead prediction of the state for this
system is given by (Camacho and Bordons, 1998):

x̂(k + j|k) = Ajx(k) +
j−1∑

i=0

Aj−i−1BT u(k + i)

Let us consider a set of Nc (control horizon) j-ahead
predictions

x :=




x̂(k + 1|k)
x̂(k + 2|k)

...
x̂(k + Nc|k)


 =

=




Ax(k) + BT u(k)

A2x(k) +
1∑

i=0

A1−iBT u(k + i)

...

ANcx(k) +
Nc−1∑

i=0

ANc−1−iBT u(k + i)




which can be expressed as

x = Px(k) + Hu

where u = [u(k)T . . . u(k+Nc−1)T ]T is the vector
of the Nc future control actions, P and H are defined
as

P =




A
A2

...
ANc


 , H =




BT 0 · · · 0
ABT BT · · · 0

...
...

. . .
...

ANc−1BT ANc−2BT · · · BT




At each step, the control action u(k) is obtained by
minimizing with respect to the sequence u of future
control moves the following performance index

J(k) = xT Qx + uT Ru (15)

where Q = diag(Q, · · · , Q) ≥ 0 and R =
diag(R, · · · , R) > 0. The idea of the predictive ap-
proach to magnetic control is to impose the orthog-
onality between the geomagnetic field vector b(k∆)
and the control vector Tmag(k) via the constraint

b(k∆)T u(k) = 0

which can be expressed in term of u as

Gu =
[
b(k∆)T 0 . . . 0

]
u = 0 (16)

By the use of Lagrange multipliers, the optimal solu-
tion of the constrained minimization problem defined
by (15) and (16) is given by

uopt = −Λ
(
I −GT

(
GΛGT

)−1
GΛ

)
HT QPx(k)

where Λ =
(
HT QH + R

)−1. According to a re-
ceding horizon strategy, the above equation has to be
evaluated at every sampling time, while only the first
element of uopt is effectively used as control signal
uopt(k). Since G depends on the periodic geomag-
netic field vector b(k∆), the optimal control uopt(k)
can be interpreted as a periodic state-feedback con-
troller. The corresponding vector of the coils’ mag-
netic dipoles mopt(k) is obtained by solving the equa-
tions



uopt(k)T uopt(k) = [mopt(k)× b(k∆)]T uopt(k)

= [b(k∆)× uopt(k)]T mopt(k)

uopt(k)T mopt(k) = 0

b(k∆)T mopt(k) = 0

and can be computed as

mopt(k) =
b(k∆)× uopt(k)

|b(k∆)|22
.

The predictive approach proposed herein leads to a
very simple solution in which the time dependence of
the controller is carried by the measurable magnetic
field vector b(k∆), therefore, this controller is very
easy to implement. The limitation of this simple for-
mulation of the predictive approach, however, is that
it does not guarantee closed-loop stability a priori.

3.3 Fixed structure projection based controller

A very common approach to the design of attitude
controllers for magnetically actuated satellites of the
form (10) is to consider control laws of the kind

u(k) = m(k) = −S(b(k∆))T Kx(k). (17)

The advantage of this controller structure is that only
a fixed gain K has to be designed, while the time-
dependence of the control law is carried by the (mea-
surable) value of the geomagnetic field b. However, to
the best knowledge of the authors, no suitable design
approaches to the selection of gain K in (17) are avail-
able.

In this paper, we propose to face this design prob-
lem using the approach to the solution of optimal
periodic output feedback problems first presented in
(Varga and Pieters, 1998). This approach relies on
a gradient-based optimization approach to determine
time-periodic output feedback controllers by minimis-
ing the quadratic cost function (13). Clearly, the pro-
posed controller (17) is a particular case of the broader
class of output feedback controllers. Given the fact



that the time-varying portion of the controller is al-
ready fixed, one needs to optimise (13) only with re-
spect to the constant parameters of matrix K.

The application of the results presented in (Varga and
Pieters, 1998) to this problem requires a way of de-
signing an initial stabilising gain, in order to reduce
the numerical difficulties associated with open loop
unstable dynamics, and to facilitate the convergence of
the iterative optimization procedure. To this purpose,
the initial gain of the controller has been selected ac-
cording to the guidelines provided by (Lovera and As-
tolfi, 2004, Proposition 1) for the globally stabilising
tuning of state feedback magnetic attitude controller
of the ”projection” type (i.e., equation (17)).

From a numerical point of view, the optimal periodic
output-feedback gain K in the control law (17) which
minimizes the performance index (13) can be com-
puted using a suitable function available in the Peri-
odic Systems Toolbox (Varga, 2005b). This function
is based on a gradient-based function minimization
technique for problems with simple bounds (limited
memory BFGS). To achieve the highest efficiency, the
function and gradient evaluations have been imple-
mented as a Fortran 95 mex-function based on the
formulas derived in (Varga and Pieters, 1998).

4. SIMULATION RESULTS

The considered spacecraft is of the type described in
Section 2 and operates in a near polar (87o inclination)
orbit with an altitude of 450 km and a corresponding
orbit period of about 5600 s. The numerical values of
parameters used in the mathematical model are:

• Satellite inertia: I = diag
[
35 16 25

]
;

• Momentum wheel inertia (kgm2): J = 0.01;
• Orbital angular rate (rad/s): Ω0 = 0.001194;
• Nominal wheel speed (rad/s): Ω = 200;
• Nominal (periodic) magnetic field components

(Tesla), used for design purposes only:

b(t) = 10−6




7 cos(Ω0t) + 48 sin(Ω0t)
23 cos(Ω0t)− 2 sin(Ω0t)

5


 .

Magnetic coils with a saturation limit of ±20Am2

have been considered.

For this satellite, a discrete-time model of the form
(11)-(12) has been computed, by choosing a discrete-
time period N=500 (which corresponds to a sampling
interval ∆ of about 11.3 seconds) and three controllers
have been designed, using the optimal LQ approach,
the predictive approach and the fixed structure projec-
tion approach. In all three cases, the weighting matri-
ces in the corresponding quadratic cost functions have
been chosen equal to Q = 0.01I6 and R = 100I3.
The results obtained from the three designs can be
summarised as follows:

• Closed loop stability: as can be seen from Table
1, all the designed compensators lead to asymp-
totically stable closed loop dynamics. However,
as mentioned previously, stability in the case of
the predictive controller is not guaranteed but
must be verified a posteriori. The value of control
horizon Nc used for computations was 30.

• Optimality: the results obtained using periodic
optimal control and the fixed structure controller
can be compared directly in terms of the achieved
optimal value of the cost function (13). In partic-
ular, it is interesting to note that the performance
loss associated with the adoption of the fixed
structure controller instead of the optimal peri-
odic one turns out to be limited to about 20% (the
optimal function value is 228.52 for the optimal
controller and 273.47 for the fixed structure one)
which can be definitely considered acceptable.

Finally, in order to illustrate the time domain behav-
ior of the fixed structure controller, a typical simu-
lation example is presented, which shows the tran-
sients following a (small) initial perturbation of the
attitude dynamics with respect to the nominal Earth
pointing equilibrium. The simulations have been car-
ried out using the tools presented in (Annoni et al.,
1999; Lovera, 2003), on the basis of the models for
the space environment described in the classical refer-
ences (Sidi, 1997; Wertz, 1978). As can be seen from
Figure 1 the proposed controller provides closed loop
transients of about half an orbit and a very good level
of performance in terms of attenuation of external
disturbance torques.

5. CONCLUDING REMARKS

The attitude control problem for a small spacecraft
using magnetic actuators has been considered and an-
alyzed. In particular, a novel approach to the design of
”projection based” magnetic attitude controllers has
been proposed, which is based on the solution of a
periodic LQ-optimal output feedback control problem
with constant feedback. The performance of this ap-
proach compared with that achievable with a periodic
LQ-optimal state feedback controller is very satisfac-
tory (nearly optimal). Future work will aim at gener-
alising the proposed approach to output feedback and
disturbance attenuation schemes.
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