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Abstract: The problem of identification of uncertain nonlinear systems using 
feedforward neural networks is investigated. The weights of the neural identifier are 
updated on-line by a discrete-time learning algorithm based on the sliding mode 
control technique, which is well known with its robustness to uncertainties. The 
learning parameters are adjusted to force the error between the actual and desired 
neural network outputs to satisfy a stable difference error equation and a quasi-
sliding mode on the zero learning error is established. The behaviour of the proposed 
discrete-time algorithm is illustrated by using it for the neural identification of an 
experimental robotic manipulator. The results show that the neural model inherits 
some of the advantages of the sliding mode control approach, such as high speed of 
learning and robustness, and is able to follow the actual robot joint trajectories with a 
high accuracy.  Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
Identification of systems having uncertainties and 
impreciseness constitutes a central part in the practice 
of systems engineering. The possibility to reach high 
performance goals in control tasks is usually directly 
related to the degree of the model accuracy that can 
be achieved.  
Robotic manipulators are hard to control nonlinear 
systems where perfect knowledge of their parameters 
is unattainable by conventional techniques because of 
the time-varying inertia and gravitational loads, and 
the uncertainties in the model used for joint friction. 
To guarantee a good tracking performance, robust 
adaptive control approaches combining conventional 
methods with new learning techniques are required. 
In such cases, the adoption of an accurate, robust and 
fast on-line system identification procedure is 
frequently a key requirement. 
In the literature, most widely used approaches for 
system identification are based on Least Mean 
Square, Recursive Least Square, Gradient Descent, 
Levenberg-Marquardt method or their variants 

(Ljung, 1999; Haykin, 1991; Krishnapura, and Jutan, 
1997; Efe, and Kaynak, 2000). The necessity of 
costly hardware for data storage, high sensitivity to 
changes in the input signal, the possibility of getting 
stuck to local minima or the need for matrix 
inversions at some intermediate stages are the prime 
difficulties in their implementation.  
When one has to deal with systems with uncertain 
dynamics a possible way to design a robust 
identification scheme is to utilize the Variable 
Structure Systems (VSS) theory in constructing the 
parameter adaptation mechanism of the identifier 
(Efe et al., 2002). VSS-based control, implemented 
in the way of sliding mode control (SMC), is well-
known with its robustness to uncertainties. The use of 
this technique introduces certain invariance 
properties in a predefined subspace of the state space, 
defined by the error and its several time derivatives. 
The basic idea behind is to restrict the state space of 
the given plant through a hypersurface passing 
though the origin, called sliding surface, whose 
dynamics is simpler than the original plant dynamics. 
The method enforces a state-space trajectory driving, 

     



the plant from the initial conditions to the designed 
sliding surface in finite time. Once there, the plant 
remains on the surface and its dynamics is substituted 
by the surface dynamics. In the literature the mode of 
motion lasting until the hitting of the hypersurface is 
called the reaching mode. The mode on the surface is 
named sliding mode and the control theory uses the 
term SMC due to the latter dynamic behaviour. For 
adequately designed surfaces, the invariance property 
exists, guaranteeing an inherent robustness, because 
the new dynamics do not depend on the plant 
parameters.  
Thanks to their universal approximation capabilities, 
neural networks can be used as an efficient 
implementation tool for modelling the complex 
input/output relations of robot dynamics, being able 
to solve problems like variable-coupling complexity 
and state dependency. During the last decade several 
neural network models and learning schemes have 
been suggested in the literature for on-line learning 
of robot dynamics (Karakasoglu et al., 1993; Katic 
and Vukobratovic, 1995; Lewis et al., 1999; Topalov 
et al., 2002). Among them are some SMC-based 
schemes, motivated by the studies that demonstrate 
the effectiveness of variable structure control in 
handling imprecision and uncertainties. 
One of the earliest studies that suggest the 
establishment of sliding modes for adaptive learning 
in Adaline networks is due to Sira-Ramirez and 
Colina-Morles (1995). Later, Yu et al (1998) have 
extended this approach by introducing adaptive 
uncertainty bound dynamics.  
A sliding mode learning approach for analog 
multilayer feedforward neural networks (FNNs) has 
been presented in (Parma et al., 1998), by defining 
separate sliding surfaces for each network layer. A 
further contribution to the subject can be found in 
(Shakev et al., 2003) in which the approach of Sira-
Ramirez and Colina-Morles (1995) is extended to 
allow on-line learning in FNNs with a scalar output. 
Its main difference from the algorithm presented in 
(Parma et al., 1998) is that only one sliding surface is 
defined for the entire network, making it 
computationally simpler and more suitable for real 
time applications.  
Although from a theoretical point of view the 
development of VSS-based learning algorithms for 
analogue (i.e. continuous time) neurons seems easier 
and straightforward, the discrete-time algorithms are 
more convenient for practical implementation. The 
discrete-time sliding mode control (DTSMC) design 
issues have been addressed in (Gao et al., 1995; Sira-
Ramirez, 1991). The stability issues in DTSMC have 
been presented in (Sarpturk et al., 1987) and the 
sufficient conditions for convergence have been 
determined. The first results on adaptive learning in 
discrete-time neural networks, for both single and 
multilayer perceptrons, based on the theory of the 
quasi-sliding modes in discrete time dynamical 
systems are presented by Sira-Ramirez and Zak 
(1991). These algorithms constitute the basis of the 
later proposed identification and control schemes in 

(Kuschewski et al., 1993). Another learning 
algorithm for FNNs is recently developed in (Parma 
et al., 1999). It may be considered as the discrete 
time counterpart of the continuous time algorithm 
earlier proposed in (Parma et al., 1998). 
In this paper, we first present a new discrete-time 
sliding mode technique to the adaptive learning of 
FNNs and then apply it to minimize the error 
between the system to be identified and an 
implemented neural identifier. In the well known 
back-propagation algorithm the learning procedure 
aims at minimizing the error function by suitable 
adjustment of the learning parameters. In particular, 
one calculates the gradient of the error function with 
respect to the learning parameters starting at the 
output nodes and works back towards the input nodes 
through the hidden layers. Once the gradient is 
calculated, the learning parameters are adjusted using 
the gradient descent method. In contrast to the 
backpropagation procedure the weight adaptation 
algorithm proposed in this paper controls the error 
dynamics of FNN's. It is described by a difference 
equation for the error, which is the difference 
between the desired and the actual FNN outputs at 
discrete instants of time. The learning parameters are 
adjusted to force the error to satisfy this stable 
difference error equation, rather than to minimize an 
error function. In other words, the proposed 
adaptation rule can be viewed as a discrete-time 
controlled dynamical system where the network 
weights can be considered as representing the system 
state at time k , the correction terms of the present 
values of the weights can be viewed as controllers, 
and the error signal ( )e k   is interpreted as a single 
output signal. It is shown in the paper that the 
algorithm presented in (Sira-Ramirez and Zak, 1991) 
can be considered as a variant of the proposed 
learning algorithm. 
The remainder of the paper is organized as follows. 
Section 2 describes concisely the applied sliding 
mode learning algorithm. Section 3 presents the 
results from the dynamics identification of the second 
and third joint of an experimental robot manipulator.  
Finally, in Section 4 a conclusion remark is made for 
the achievements in this paper. 
 
 

2.  ON-LINE LEARNING IN MULTILAYER 
PERCEPTRON NETWORKS BASED ON 

SLIDING MODE CONCEPT 
 
 
2.1 Initial assumptions and definitions. 
 
Consider a feedforward neural network with one 
hidden layer and a scalar output. We will use the 
following definitions: 

1 2, ,...
T p

pX x x x⎡ ⎤= ⎣ ⎦ ∈  is the augmented by a bias 

term input vector (input pattern) which is assumed 
fixed during the learning iterations. 

     



( ) ( ) ( ) ( )
1 2

, ,...,
n

T n
H H H HY k y k y k y k⎡= ⎣ ⎤ ∈⎦  is the 

vector of the output signals of the neurons in the 
hidden layer, where  is the time index or iteration. k

( ) ( ) ( ) ( )
1 2

, ,...,
n

T

H H H HnetY k net y k net y k net y k⎡ ⎤= ⎣ ⎦ is 

the vector of the net input signals of the hidden 
neurons. It is computed as 
 

                     (1) ( ) ( )1HnetY k W k X=
 
where  is the matrix of the time-varying 
weights of the connections between the neurons of 
the input and the hidden layer. Each element 

1( ) n pW k ×∈

( ),1i jw k  of this matrix represents the weight of the 
connection of the corresponding hidden neuron i  
from its input j . 

( )y k ∈  is the time-varying network output. It can 
be calculated as follows: 
 

( ) ( ) ( ) ( )( ) 2 2H Hy k W k netY k W k Y k⎡ ⎤= Φ =⎣ ⎦      (2) 

 
where   is the vector of the weights of 
the connections between the neurons in the hidden 
layer and the output node. Both  and 

12( ) nW k ×∈

( )1W k ( )2W k  
are considered augmented by including the bias 
weight components for the corresponding neurons. 

( ) ( )( ) ( )( )11 ,..., ,
n

T

H H n HnetY k f net y k f net y k⎡ ⎤⎡ ⎤Φ =⎣ ⎦ ⎣ ⎦
  

 is an operator which elements : nΦ → n
if  are 

the activation functions of the neurons in the hidden 
layer. It will be assumed here that  is 

such that 

:if →

( ) (i ii H i )Hf net y f net y− = −  for 1,...,i n= . 

The so called tan-sigmoid activation function 

( ) 1
1

x

x

etan - sig x
e

−

−

⎛ −
=⎜ +⎝ ⎠

⎞
⎟ , common to neural networks, 

has been used in the experiments.  
The neuron in the output layer is considered with a 
linear activation function. 
The scalar signal  represents the desired output of 

the neural network and 
dy

( ) ( ) de k y k y= − ∈  is the 
error at time . k
 
 
2.2 The discrete-time SMC-based learning 

algorithm. 
 
In the proposed here VSS-based learning approach, 
the zero value of the learning error coordinate ( )e k  
is defined as a time-varying sliding surface, i.e. 
 

( )( ) ( ) ( ) ( ) 0dS e k S k e k y k y= = = − =        (3) 

In the continuous SMC design the well known 
stability condition to be satisfied for a sliding mode 
to occur is (Edwards and Spurgeon, 1998) 
 

( ) ( ) 0S t S t <                        (4) 
 
In the discrete-time implementation of the sliding 
mode methodology a non-ideal sliding (quasi-sliding) 
regime will inevitably appear, since the control input 
is computed and applied to the system at discrete 
instants. It is clear that the condition (4) which 
assures the sliding motion is no longer applicable in 
discrete-time systems. Thus, a discrete-time sliding 
mode condition must be imposed. The simplest 
approach is to substitute the derivative by the 
forward difference as in (5) 
 

( ) ( ) ( )1 0S k S k S k⎡ ⎤+ −⎣ ⎦ <                 (5) 

 
but this represents the necessary, not sufficient 
condition for the existence of a quasi-sliding motion 
(Sarpturk et al., 1987). It does not assure any 
convergence of the state trajectories onto the sliding 
manifold and may result in an increasing amplitude 
chatter of the state trajectories around the hyperplane, 
which means instability. A necessary and sufficient 
condition assuring both sliding motion and 
convergence onto the sliding manifold is given by 
Sarpturk et al. (1987), of the form: 
 

( ) ( )1S k S k+ <                      (6) 

 
The above condition can be decomposed into two 
inequalities as: 
 

( ) ( ) ( )1 0S k S k sign S k⎡ ⎤+ − <⎣ ⎦          (7) 

and 
( ) ( ) ( )1 0S k S k sign S k⎡ ⎤+ + >⎣ ⎦          (8) 

 
where (7) and (8) are known as sliding condition and 
convergence condition, respectively. 
The network should be continuously trained in such a 
way that the sliding mode conditions (7) and (8) will 
be enforced. To enable  is reached, the 
following theorem is used: 

0S =

Theorem 1: If the adaptation law for the weights 
 and  is chosen respectively as 1( )W t 2( )W t

 

( ) ( )2
1

T
H

T

netY k X
W k

X X
∆ = −                 (9.a) 

( ) ( ) (1 1 1 1W k W k W k+ = + ∆ )           (9.b) 
and 

( ) ( ) ( ) ( )2 2 2
T

H
T

H H

Y k
W k W k sign e k

Y Y
α∆ = − +   (10.a) 

( ) ( ) ( )2 1 2 2W k W k W k+ = + ∆      (10.b) 

     



with α ∈  being the adaptive reduction factor 
satisfying ( )0 2 e kα< < , then, for any arbitrary 

initial condition , the learning error (0)e ( )e k  will 
converge asymptotically to zero and a quasi-sliding 
motion will be maintained on . 0e =
Proof:  One can check that the following string of 
equations is satisfied. 
 

( ) ( ) (1 1e k e k e k∆ + = + − )
)

)

 
( ) (1y k y k= + −  

( ) ( ) ( ) (2 1 1 2H HW k Y k W k Y k= + + −  
( ) ( ) ( ) ( ) ( )2 2 1 2HW k W k Y k W k Y k⎡ ⎤= + ∆ + −⎣ ⎦ H

 
( ) ( ) ( ) ( ) ( )2 1 2H H HW k Y k Y k W k Y k⎡ ⎤= + − + ∆⎣ ⎦ 1+  

           ( ) ( ) ( ){ }2 1HW k netY k netY k⎡ ⎤ ⎡= Φ + − Φ⎣ ⎦ ⎣ H ⎤⎦  

( ) ( )2 1HW k netY k⎡+∆ Φ +⎣ ⎤⎦              (11) 

 
Note that 
 

( ) ( )1 1 1HnetY k W k X+ = +  
( ) ( )1 1W k W k X⎡ ⎤= + ∆⎣ ⎦  

( ) ( )1HnetY k W k X= + ∆               (12) 
 
Substituting (12) and (9.a) into (11) yields 
 

( ) ( ) ( ) ( ){1 2 1He k W k netY k W k X⎡∆ + = Φ + ∆⎣ ⎤⎦  

( ) }HnetY k⎡ ⎤−Φ ⎣ ⎦  

( ) ( ) ( )2 HW k netY k W k X⎡+∆ Φ + ∆⎣ ⎦1 ⎤  

( ) ( ) ({ ) }2 H HW k netY k netY k⎡ ⎤ ⎡= Φ − − Φ⎣ ⎦ ⎣ ⎤⎦

⎤⎦

 

( ) ( )2 HW k netY k⎡+∆ Φ −⎣           (13) 

 
Since  is odd by assumption, the previous error 
equation becomes 

Φ

 
( ) ( ) (1 2 2 He k W k netY k⎡ ⎤∆ + = − Φ ⎣ ⎦)  

( ) ( )2 HW k netY k⎡ ⎤−∆ Φ ⎣ ⎦  

( ) ( ) ( )2 2 2 HW k W k Y k⎡ ⎤= − + ∆⎣ ⎦     (14) 

 
Substituting (10.a) into the above equation gives 
 

( ) ( ) ( )1 2 2 2 2e k W k W k⎡∆ + = − +⎣  

( ) ( )
( ) ( ) ( )

T
H

HT
H H

Y k sign e k
Y k

Y k Y k
α ⎤

− ⎥
⎥⎦

 

( )signe kα= −                          (15) 
 
By multiplying both sides of eq. (15) by ( )e k  it 
follows that 

( ) ( ) ( )1e k e k e kα∆ + = − < 0           (16) 

which means that  the sliding condition (5) or (7) is 
satisfied. 
Eq. (15) can be also rewritten as follows 
 

( ) ( )1e k e k signe kα+ = − ( )            (17) 
 
By adding to the both sides of eq. (17)  and 
subsequent multiplication with 

( )e k
( )sign e k  the 

following equation can be obtained 
 

( ) ( ) ( ) ( )1 2e k e k sign e k e k α⎡ ⎤+ + =⎣ ⎦ −     (18) 

 
It follows from eq. (18) that the convergence 
condition (8) will be satisfied for all ( )0 2 e kα< <  

and ( ) 0e k ≠ . This proof is a sufficient condition for 
the quasi-sliding mode to occur. 
Remark 1: Note that eq. (17) describes the FNN error 
dynamics. 
In particular if ( )e kα β=  with 0 2β< <  is used it 

follows that 
 

( ) ( ) ( )1 1e k e kβ+ = −                 (19) 
 
which coincides with the result obtained by Sira-
Ramirez and Zak (1991), and shows that the error 
will converge asymptotically to 0 at a rate of 1 β− . 
In order to reduce the “chattering” phenomenon, 
when a small sampling period is adopted, the 
following approximation for the signum function has 
been adopted: 
 

( ) ( )
( )
e k

signe k
e k δ

≈
+

                    (20) 

 
with δ  being a small constant. 
 
 

3. ON-LINE IDENTIFICATION OF ROBOTIC 
MANIPULATOR DYNAMICS 

 
In this section, the effectiveness of the proposed 
discrete-time sliding mode learning approach is 
evaluated by simulation studies carried out on a 
realistic computer model of the dynamics of five 
degrees of freedom experimental robotic manipulator 
(CRS CataLyst-5, produced by Quanser). The 
identification task has been restricted to the design of 
neural network identifiers for two consecutive robot 
joints (the shoulder and elbow joint) by using one 
neural network per joint. The manipulator dynamics 
has been carefully simulated using Matlab 
SimMechanics toolbox by taking into account the 
data about the frame assignments for each link, 
distances between each two joint axes, default 
orientation, mass and inertia tensors of each link with 
respect to the center of gravity, information about 
friction dynamics, gear mechanisms and motor 

     



transfer functions of each joint (see Fig. 1). The 
developed model has motor input voltages as input 
signals and joint angle and angular speed of each 
joint as output signals.  
 

 
 

Fig. 1. Model of manipulator dynamics within 
SimMechanics Toolbox 

 
Feedforward neural network topology with one 
hidden layer consisting of 13 neurons with tan-
sigmoid activation functions, twelve inputs, and 
output layer with one linear neuron has been 
considered as an appropriate neural identifier (NI) 
structure. Two identical FNNs (one per joint) where 
used as NIs. 
The input vector of each of the two NIs has been 
constructed as follows: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 3 3 2 2[ , 1 , , 1 , , 1 ,X k q k q k q k q k q k q k= − − −  

( ) ( ) ( ) ( ) ( ) ( )3 3 2 2 3 3, 1 , , 1 , , 1 Tq k q k v k v k v k v k− − ]−

−

−

  (21) 
 
where  are the joint 
angles and velocities for the -th robot joint, and 

 and v k  are the implemented voltages 
(control actions) to the i -th joint DC drive at time 
instant  and  respectively. As shown in 
equation (21), the manipulator coupled dynamics is 
taken into account by feeding each of the two NIs 
with the variables related to both robot joints (see 
also Fig. 2). The scalar outputs of the two NIs 
represent the estimated joint coordinates at time step 

 for the second and the third robot joint 
respectively: 

( ), ( 1), ( ), ( 1)i i i iq k q k q k q k−
i

( )iv k ( 1)i

k 1k −

1k +

 

( ) ( ) ( ) ( )2 2 3 3
ˆ ˆˆ ˆ1 ; 1q k X k q k X k⎡ ⎤ ⎡+ = Γ + = Γ ⎤⎣ ⎦ ⎣ ⎦     (22) 

 

( )dq k

 
 
Fig. 2. Forward dynamics identification of the robotic 

manipulator using FNNs. 
 
where ( )2Γ ⋅  and ( )3Γ ⋅  are non-linear functions of 

the arguments ν ,  and , and q q ( ) ( )2 3
ˆ ˆ,Γ ⋅ Γ ⋅  are 

their estimates learned by the NIs. The sampling time 
has been taken 1 ms and ( )e kα =  has been adopted. 

The reference signals to be followed where 
sinusoidal ones with frequency π/2 rad/s and 
amplitude 30 degrees, and 45 degrees for the second 
and third joint respectively. The results are shown on 
Fig. 3. 
 

 
a) 

 

 
b) 

 
Fig. 3. Simulation results in neural network 

identification of manipulator dynamics.  
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The NIs learning has been initialized 0.4 s after the 
beginning of the trajectory tracking task. As it can be 
seen from the simulations the two identifiers are able 
to follow accurately the respective joint trajectories 
without chattering. 
 
 

4. CONCLUSIONS 
 
An application of the sliding mode technique to the 
learning algorithms of FNNs which are utilized to 
implement neural identifiers has been discussed. In 
order to guarantee the existence of a quasi-sliding 
mode, new discrete-time learning law is proposed to 
adapt on-line the weights of NI. This law has a 
sliding mode structure. The applicability of the 
proposed learning scheme is illustrated on the 
example of on-line dynamics identification of an 
experimental manipulator. The results show the 
excellent performance of the proposed neural 
network identifiers with discrete-time sliding mode 
on-line learning. The learning structures are coming 
into some of the advantages of variable structure 
systems, such as high speed of learning and 
robustness. 
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