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BP 239, F-54600 VANDŒUVRE Cedex, France
<firstname.name>@cran.uhp-nancy.fr

Abstract: The objective of this work is to validate the modelling of a switched Ethernet
architecture in order to be able to evaluate the maximum end to end delays. The major
interest is to apply these results in an industrial or technical context, where some of
the communications are strongly time-constrained. This paper describes a model of
an Ethernet switch. It also presents the analytical formulas issued from the Network
Calculus theory which upper bound the maximum time for crossing such a switch, and
an algorithm to determine the maximum end to end delays of the time-critical messages
over the whole network. This work is validated by an experimental application which
proves that the worst case estimated by the Network Calculus can be really reached
and that this method is not so pessimistic.Copyright c©2005 IFAC
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1. INTRODUCTION

Nowadays, Ethernet is more and more used in
industrial environment despites its non determin-
isim due to its medium access mechanism. Sev-
eral works have been led in order to solve this
problem. The first idea was to consider that the
data flow is sufficiently quickly handled, com-
pared with the time constraints of the industrial
applications. The micro-segmentation with full-
duplex switches (Alves et al., 2000) which shift
collisions to congestion, combined with the ap-
propriate real-time scheduling and fault-tolerance
techniques (Song, 2001) also must enable the use
of Ethernet in safety-critical applications with
hard real-time constraints. Some other proposals
concern the modification or the extension of the
access method (Kopetz et al., 1989)(Pedreiras and
Almeida, 2002)(Höller et al., 2003), or the traf-
fic smoothing (Kweon et al., 1999) (Caponetto

et al., 2002). Finally, some works focus on the
topology optimization (Georges et al., 2004a). But
all these considerations do not prove that all the
frames are effectively received under a predefined
bound. Our approach is the following. A good
knowledge of the topology and the traffic enables
by using the Network Calculus theory to deter-
mine analytically the maximum end-to-end delays
for crossing the network. The objective of this
paper is to validate this theory by comparing
it to measurements on a real experimentation.
This will authorize to know a-priori if the time
contraints of the application will be always satis-
fied (even in the worst-case). In other papers we
have presented some methods improving the net-
work performances : they integrate the Network
Calculus to the topology optimization (Georges
et al., 2004a) or take into account the priority
management (Georges et al., 2004b).



The section 2 details how to model the incoming
traffic existing in industrial environment by using
the leaky bucket concept. In section 3, a switch
modelling is described. The section 4 describes the
mathematical process to determine the maximum
end-to-end delays for the messages to cross the
whole network. These results are compared with
the measurement done on a real experimental
platform (section 5). They show that the worst-
case obtained by the Network Calculus is some-
times reached in the real world. So that the theory
is not so pessimistic contrary to the general feeling
about this approach.

2. MODELLING OF THE TRAFFIC

An analysis of the traffic handled by indus-
trial networks enables to identify several kinds
of frames regarding their periodicity and their
temporal deadlines :

• the control traffic is usually periodic and is
hardly time-constrained. It depends on the
time cycles defined by the control devices
such as programmable controllers. It is well
known in terms of volume and frequency.

• alarms are sent asynchronously, but have also
to be received under a predefined bounded
time. Each of them is clearly defined, but the
occurrence of their transmission is unknown.

• the traffic to configure industrial devices
(programs up or downloading) and the gen-
eral management traffic (for maintenance,
production management) are also asynchronous,
but do not have to respect strict hard time
constraints. This traffic is unknown in terms
of volume and transmission occurrence.

Since the objective is to guarantee some determin-
istic performances of the network, the incoming
traffic has to be bounded. For this, the leaky
bucket controller concept (Le Boudec and Thi-
ran, 2001) (figure 1) is used. The burstiness con-
straint (Cruz, 1991) imposes the traffic generation
to be bounded by an affine function b(t), in which
a burst value σ is associated to a constant rate ρ.

R(t)

σ

ρ
b(t)= σ+ ρt

b (t) = σ + ρt

∀x, y; y ≥ x, x ≥ 0, then
R ∼ b ⇔

∫ y

x
R (t) dt ≤ σ + ρ (y − x)

Fig. 1. The leaky bucket controller concept

b(t) can be assimilated (∼) to the upper bound
of the number of bits sent at time t, σ is the
maximum amount of traffic that can arrive in a
burst, i.e. the frames max. length, ρ is an upper
bound on the long-term average rate of the traffic
and R(t) is the instantaneous rate of the stream.

To take into account the capacity of the links C,
the previous affine function is completed with a
stability constraint b (x) ≤ Cx. It means that the
arrival of data cannot be greater than the capacity
C of the link. So, we have

b (t) = min {Ct, σ + ρt} (1)

3. SWITCH MODELLING

Switches are modelled as presented on the figure
2. It is the result of a study described in (Georges
et al., 2003) in which several models are built and
compared. It is constituted of a sequence of three
basic elements : one multiplexer, one queue and
one demultiplexer. In order to take into account
the internal speed of a switch, the three following
capacities will be used : C, the throughput inside
the switch, Cin, the throughput of arrival of data
on input ports and Cout, the output speed.

Cin C

(σ1, ρ1)
(

σ∗
1
, ρ1

)

Cout

C C

fifo ports
demultiplexer

fifo memory
multiplexer

Dmux Dqueue Dqueue

Fig. 2. Switch model

Since the study is about Ethernet networks, the
scheduling policy has to be non preemptive. More-
over, it is considered that the components are
work-conserving systems, i.e. they cannot have
vacations and their forwarding policy is the best-
effort. In this paper, the FIFO forwarding policy is
chosen in order to respect the fairness of Ethernet:
a FIFO memory to model the switching process
and FIFO queues to model the transmission func-
tion of the output ports. This model has been
improved in (Georges et al., 2004b) in which it
is extended with the priority management.

4. MAXIMUM END-TO-END DELAYS FOR
CROSSING A SWITCH

The Network Calculus is a deterministic the-
ory of the queuing systems. The main contri-
butions are (Cruz, 1991),(Le Boudec and Thi-
ran, 2001),(Chang, 2000). (Le Boudec and Thi-
ran, 2001) have used it to improve delay bounds
of the differentiated services model of the IETF for
different schedulers. This response-time analysis is
more and more used to study Ethernet networks
temporal performances (Georges et al., 2004b),
(Jasperneite et al., 2002).
The quantity of data processed in a device is called
the backlog (Le Boudec and Thiran, 2001, defini-
tion 1.2.1) and could be seen as the congestion



value of the device. It is defined at time t by the
amount of data which is already arrived minus
the amount of data processes at the same time.
In the network calculus theory, delays correspond
to the time needed to process the backlog. So,
upper bounded delays depend in the worst case
on the maximum backlog expression. For instance,
(Cruz, 1991, theorem 4.1) has defined that the
transit delay of a 2 input-ports FIFO multiplexer
is upper bounded by

Dmux,1 (t) =
max [b1 (t) + b2 (t + L/C2) − Coutt]

Cout

For queues, the Cruz’s proposition can be ex-
tended as shown in (Georges et al., 2003) to :

Dqueue =
1

Cout

(Cin − Cout)

Cin − ρin

σin

Finally, it is assumed for the demultiplexer that
the ’routing step’ is instantaneously achieved, so
that Ddemux = 0. The complete study (Georges
et al., 2003) gives the temporal behaviour of each
component constituting the switched communica-
tion system. Therefore, the maximum delay for
crossing an Ethernet switch is upper-bounded by:

Dswitch = Dmux + Dqueue(memory)
+ Dqueue(ports)

It is now necessary to determine the maximum
end-to-end delays over a complete switched com-
munication system. A method to resolve these
upper-bounds is proposed in the next section.

5. EXTENSION : MAXIMUM END-TO-END
DELAYS FOR CROSSING A SWITCHED

ETHERNET NETWORK

The maximum delay for crossing a switch D
depends on the leaky bucket parameters : the
maximum amount of traffic σ that can arrive in
a burst and the upper-bound ρ on the long-term
average rate. Consequently, we need to know the
(σ, ρ) envelop at each point of the network. As
shown by the figure 3, the problem is that we
only know the initial arrival curve

(

σ0, ρ0
)

. The
other arrival curves, for example after crossing one
switch

(

σ1, ρ1
)

have to be determined.

(

σ0, ρ0
) (

σ1, ρ1
) (

σ2, ρ2
)

? ?
Dswitch Dswitch

Fig. 3. Burstiness along a switched network.

Our contribution consists in applying the Cruz
theory to a network model based on switches
modeled as in figure 2. In order to resolve the
evolution of the burstiness constraint of a flow,
Cruz extends the previous method. For a system
for which the arrival of data is constrained by
bin (Rin ∼ bin) and for which the delay D for

crossing the system is finite (D < +∞), he shows
that the output of data is constrained by bout

(Rout ∼ bout) as :

bout (x) = bin

(

x + D
)

(2)

which gives by using (1):

σout = σin + ρinD, ρout = ρin (3)

In the case of the figure 3, the arrival curve after
crossing the first switch will be also defined by
(

σ1, ρ1
)

=
(

σ0 + ρ0Dswitch, ρ0
)

.

This analysis is based on the fact that the arrival
rate stays constant and that the delay is trans-
lated in a supplementary burst (seconds in bits).
An example will be given in section 5 to illustrate
the method. Since the routing strategy is fixed at
any point of switched Ethernet networks, all of the
previous upper-bounded delays are translated in
upper-bounded output burstiness and the differ-
ence of burstiness between the input and the out-
put of the network will enable to determine end-
to-end delays. All of these points are put together
in the following algorithm. Its philosophy is to
derive in a first time the delay equation in output
burstiness equation, then to compute the output
burstiness of each stream at each point of the
network and finally to obtain an upper-bounded
delay from the end-to-end burstiness difference.
The end-to-end delay resolution steps are:

(1) Identify all streams on each station and de-
termine the initial leaky bucket values.

(2) Identify the route of each stream.
In switched Ethernet networks, paths are
determined by the spanning tree.

(3) On each switch, formulate all streams output
burstiness equations as described in the equa-
tion (3). By convenience, it is suggested to
choose the notation σj

i , where i is the stream
identifier and j is the number of crossed
switches. At the beginning, the substream i
is represented by σ0

i .
(4) Define the equation systems under the math-

ematical form anσ1 + bnσ2 + ...+ znσm = δn.
(5) Calculate the burstiness values σi.
(6) From the equation (3), determine the end-to-

end delay with

Di =
σh

i − σ0

i

ρi

where h is the number of crossed switches.

The first step of this algorithm corresponds to
our first assumption : even if the incoming traffic
is unknown, a simple pessimistic characterisation
is possible. For each stream, the amount of data
transmitted on the network by the source at time
t must be bounded by an (σ, ρ) envelop. Infor-
mation about traffic or traffic smoother variables
can be used. The second step is due to the second
assumption : the routing strategy is supposed



fixed. In switched Ethernet networks, it is true
since the spanning tree protocol eliminates the
loops and gives a single path to go from one node
to another. In this part, we only have to look
at the spanning tree to learn the switches that
will be crossed by each stream. Now the initial
conditions have been validated and the algorithm
goes on with the formulation of the burstiness
for each stream all along the network. In fact,
the output burstiness of a stream is written by
using the equations presented in the section 4. The
equation system written at the step 4, is resolved
at the step 5. Now since all burstiness variables are
known, it is possible to determine a delay bound
between two points of the network. As shown at
the last step of the algorithm, the equation (3) is
used to determine an upper-bounded end-to-end
delay since it gives D = (σout − σin) /ρin. The
end-to-end delay is proportional to the burstiness
increasing all along the network.

6. EXPERIMENTAL VALIDATION

In order to confirm the validity of the model, a set
of experimental measurements has been carried
out. In these experiments, the time to transmit
one frame from the sender to the receiver on a
switched Ethernet network is measured. These
results will be compared to the bound given by the
network calculus applied on the model proposed
in this paper and also compared with the delays
provided by a network simulation tool.

As presented by (Pasztor and Veitch, 2001), one-
way measurements of delays are not quite sim-
ple since measurement errors are possible. It is
mainly due to timing problems as the non syn-
chronisation of clocks and the process schedul-
ing. The first issue is to be sure that the two
monitors (sender and receiver) have the same
time reference. In a first approach, we choose
to execute them on a same computer with two
Ethernet interfaces. Consequently, the two pro-
cesses have to obtain a privileged access to the
processor and the concurrence between them has
to be controlled. Using the sched setscheduler

Linux system call, the scheduling policy is set to
SCHED FIFO and the priority of the two processes
to sched get priority max. Moreover, in order
to ensure a good scheduling between these two
processes, the sender suspends its execution just
after sending one frame by calling the usleep

event up to the next frame. It enables the receiver
to quickly react to one frame arrival event. Conse-
quently, we choose to study the model presented
in this paper over a first platform (figure 4).
The platform is constituted of one Cisco Cata-

lyst 2912 XL switch and three PCs. The network
links are always configured at 10Mb/s in the full-
duplex mode. Communications are generated by
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Fig. 4. A first experimental platform.

an algorithm running on the three stations. This
algorithm enables to build Ethernet frames : the
network output interface, the MAC destination
address, the frame length and the inter-arrival
time of the frames and to send it on the network.
Garros periodically sends frames of 72 bytes (the
minimum data length in an Ethernet frame) from
the first Ethernet interface (eth1) to its second
Ethernet interface (eth0). The period is fixed at
10 ms. In order to load the switch, a background
traffic is generated : ferdrupt and drec send frames
of 1526 bytes (the maximum data length in an
Ethernet frame) each 5 ms to the eth0 interface.

We apply now the method steps of the end-to-
end delay resolution previously presented. First,
we identify the initial leaky bucket values of each
stream. There are three streams in this network
: from garros/eth1 to garros/eth0 (stream 1,
initial leaky bucket b0

1
(t)), from ferdrupt to gar-

ros/eth0 (stream 2, b0

2
(t)) and from drec to gar-

ros/eth0 (stream 3, b0

3
(t)). The parameters of the

traffic generators give :

b0

1
(t) = σ0

1
+ ρ1t = 72 + 7200t

b0

2
(t) = σ0

2
+ ρ2t = b0

3
(t) = σ0

3
+ ρ3t

= 1526 + 305200t

Next, we have to identify the route of each stream.
Here, paths are simple as shown on the figure
4 : there is only one switch to cross. Moreover,
we have to consider the paths inside the switch,
i.e. in the switch model (figure 4). At the input,
streams which arrive from different input ports
are put together into the shared memory by the
multiplexer, and they are forwarded on the same
output queue corresponding to the interface eth0

of garros. To identify the delay generated by the
multiplexer and the queue, we will note the out-
put burstiness of each stream respectively on the
multiplexer and the queue : σ1

1
, σ2

1
for the stream

1; σ1

2
, σ2

2
for the stream 2 and σ1

3
, σ2

3
for the stream

3. For each of the basic element of the switch
model, we formulate all streams output bursti-
ness. It gives the equation system at the top of
this page. These equations are obtained by using
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the section 4 results and the equation (3). The two
first lines represent the burstiness evolution of the
stream 1. (1.1) corresponds to the multiplexer and
(1.2) corresponds to the queue. In the same way,
(2.1) and (2.2) are relative to the stream 2 and
(3.1), (3.2) to the stream 3. The equation system
which describes such a small network shows that
for a more complex architecture, the dimension of
the system will roughly increase. It is due to the
fact that the burstiness evolution is determined
at each point of the network and that there is no
aggregation of streams. When the burstiness val-
ues σ are computed, the next step is to calculate

D1 =
σ2
1−σ0

1

ρ1
in order to determine the maximum

end-to-end delay for the stream 1. The result gives
: 3080 µs. This reference of 3080 µs will now be
compared with the experimental measures (figure
6(a)). Then, we used the simulation in which a
network device such as a switch is modelled by
using buffers to represent input and output ports
on which are specified both buffer sizes and buffer
processing times. It also uses internal buses for
moving frames from one port to another one. On
this example, the simulation gives a maximum
delay of 450 µs. First, if we compare it to the
bound provided by the Network Calculus, we can
conclude that the over-estimation of the network
calculus is very important. But if we compare
now this bound to the experimental results, we
can remark that even if almost all measures are
very inferior to this bound and to the simula-
tion value, some measures tend to the calculus
bound. Indeed, 56 % of the measures are inferior
to 450 µs (the average of the measures is 664 µs).
Some observed delays grow up to 2832 µs, i.e.
nearly 6 times more. That shows that a simple
capacity analysis (the load of the link between the
switch and the network interface eth0 of garros is
less than 50 %) is not sufficient to ensure that
an Ethernet network will respect the industrial
requirements. Moreover, it shows that calculus
bounds are closed to the greatest measures since
the over-estimation is only about 8 % of the
maximum delay measured. Finally, it shows that
the background traffic which rises the switch load
would increase the delays in the worst-case.
Another experimentation extends the topology
(figure 5): two switches have now to be crossed.
The station named garros is fitted with two Eth-

ernet cards (eth0 and eth1), each one connected
to a different switch. The two other stations are
directly connected to one different switch. Links
are configured at 10 Mb/s in full-duplex.

garros
ferdrupt dreceth1 eth0

Fig. 5. A second experimental platform.

Garros will send frames of 72 bytes of data each
second, from eth1 to its second interface eth0

during 10 minutes. After 300s, ferdrupt sends
frames of 1026 bytes of data to drec each 10
ms. End-to-end delays measures are plotted on
the figure 6(b). It shows again that the measures
confirm the upper-bound given by the network
calculus. Indeed, for the first 5 minutes when
using the calculus we determine that end-to-end
delays will be limited to 328 µs, the measures
remain inferior to 312 µs. And for the last 5 min-
utes (with the background traffic), we compute
a bound of 1173 µs when the maximum delay
observed is 1119 µs. In fact, the over-estimation
is less than 5 % of the maximum delay measured
in the two cases. Moreover, the graph shows that
our approach enables to take care about real worst
situations. During the second part of the experi-
mentation, even if more than 91 % of the measures
remain inferior to 328 µs (the calculus upper-
bound in the first part), we observe that a simple
background traffic could significantly increase the
delay as determined by the calculus.
To conclude, during these series of experimenta-
tion, the bounds obtained by the calculus theory
are validated by the measures. The association of
the network calculus and of the switch modelling
proposed here, enables to have a good idea of the
performance of this kind of network.

7. CONCLUSION

The experimental results presented in this paper
show that the computed maximum end-to-end
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Fig. 6. End-to-end delays of frames sent by garros (stream 1) in µs

delays are very closed to the worst-case measures.
It has two meanings. First, the proposed method
really bounds the Ethernet performances even if
it is non-deterministic. Secondly, it proves that
the use of the Network Calculus for industrial
networks is not so much pessimistic. Therefore,
this paper is a contribution to the debate on
Ethernet based industrial communications.
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