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Abstract: Many complex dynamical behaviors in the real world can be modelled
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1. INTRODUCTION

In the last decade, tremendous efforts have been
devoted to the study of theory and applications
of neural networks (Baldi and Atiya, 1994; Cao
and Zhou, 1998; Civalleri et al., 1993; Carpenter
et al., 1987; Cohen and Grossberg, 1983; Fang
and Kincaid, 1996; Grossberg, 1988; Guan and
Chen, 1999; Guan et al., 2000; Hopfield, 1984;
Liao and Yu, 1998; Michel and Gray, 1990; Qiao et
al., 2001). Various neural network structures are
built based on well-established mathematical and
engineering theories and particularly fundamental
principles that govern biological neural systems.

The most widely studied neural networks in the
current literature may be grouped into contin-
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uous and discrete networks. However, there are
still many neural networks existing in the real
world with dynamics in between these two groups,
more precisely with impulses (Bainov and Sime-
onov, 1989; Lakshmikantham et al., 1989; Liu and
Guan, 1996). Impulsive phenomena can be found
in many fields of information science, electronics,
automatic control systems, computer networking,
artificial intelligence, robotics, and telecommu-
nications, among others. Recently, a new type
of neural networks — impulsive neural networks
— have been constructed as an appropriate de-
scription of such special phenomena of abrupt
and qualitative dynamical changes (Guan and
Chen, 1999; Guan et al., 2000).

In deterministic impulsive neural networks, many
vital data such as the neurons fire rate and the
synaptic interconnection weight are usually ac-
quired and processed by means of statistical anal-



ysis, in which estimation errors inevitably exist.
On the other hand, parameter perturbation in
neural-networks, particularly in their implemen-
tation with the VLSI technology, is also unavoid-
able. To handle these uncertainties, one way is
to explore the ranges of such vital data as well
as the bounds of such circuitry parameters, and
to describe them by intervals. In addition, since
delays frequently appear in both biological and ar-
tificial neural networks, the delays may slow down
the rate of information transmission and may also
result in instability (Baldi and Atiya, 1994; Car-
penter et al., 1987; Hou and Qian, 1998; Liao
and Yu, 1998; Lu, 2000). In circuits, for example,
qualitative analysis of delay neural networks has
known to be necessary for design. These moti-
vate the present study of dynamical properties
of uncertain nonlinear impulsive neural networks
with delays, and this is the first attempt for an
investigation of the subject, to the best of our
knowledge (Liao and Yu, 1998; Lu, 2000).

The paper is organized as follows. In Sect. 2,
the uncertain nonlinear delayed impulsive neural
network model is first described. Then, in Sect. 3,
the concept of equilibrium of the model is intro-
duced and its global exponential robust stability
property is established. Finally, some conclusions
are given in Sect. 4.

2. PROBLEM FORMULATION

Based on the structure of the Grossberg-Cohen-
Hopfied model (Carpenter et al., 1987; Cohen and
Grossberg, 1983; Grossberg, 1988; Hopfield, 1982;
Hopfield, 1984), the cellular neural networks (Cao
and Zhou, 1998; Civalleri et al., 1993), and the
delayed impulsive autoassociative neural network
model (Guan and Chen, 1999; Guan et al., 2000),
the uncertain nonlinear delayed impulsive neural
network model considered in the paper is de-
scribed as follows:

Dyi =−aiPi(yi(t)) +
n∑

j=1

aijFj(yj(t))Duj

+
n∑

j=1

bijGj(yj(t− τ))Dwj + Ii, (1)

where i = 1, · · · , n, ai > 0 are given constants,
aij ∈ [aij , aij ], and bij ∈ [bij , bij ] are uncertain
parameters, aij , aij , bij , and bij are known real
numbers, i, j = 1, · · · , n; τ ≥ 0 is the time delay;
y = col(y1, · · · , yn) ∈ Rn, yi is the state of the
ith neuron, I = col(I1, · · · , In) is the input to the
network, D denotes the distributional derivative,
ui, wi : J = [t0,+∞) 7→ R are functions of
bounded variations and right-continuous on any
compact subinterval of J , and Fi(·) and Gi(·) are

integrable functions with respect to ui and wi,
respectively, Pi(·) is differentiable.

System (1) has initial conditions

yi(t) = ψi(t), t0 − τ ≤ t ≤ t0, i = 1, . . . , n, (2)

where Ψ(t) = col(ψ1(t), · · · , ψn(t)) are functions
of bounded variation and right-continuous on any
compact subinterval of [t0 − τ, t0].

Definition 2.1. The vector-valued function y(t) =
(y1(t), · · · , yn(t))> ∈ Rn is said to be a solution
of (1) with the initial condition (2), if it satisfies
Eqs. (1) and (2) with the given parameters ai > 0,
aij ∈ [aij , aij ] and bij ∈ [bij , bij ].

It is obviously that, in general, the solution of (1)
depends on the corresponding parameters ai, aij

and bij . In the subsequent discussions, it is always
assumed that a solution of (1) exists and is unique
(Guan and Liu, 1992; Pandit and Deo, 1982). In
fact, the model formulation given above implies
that the states yi, i = 1, 2, · · · , are functions
of bounded variations and right-continuous on
any compact subinterval of J , in which Dui and
Dwi represent the effects of sudden changes in
the states of the system at the discontinuity
points of ui and wi, i = 1, · · · , n. They both
can be identified with the usual Lebesgue-Stieltjes
measure.

Without loss of generality, assume that

ui(t) = t +
∞∑

k=1

βikHk(t),

wi(t) = t +
∞∑

k=1

γikHk(t), i = 1, · · · , n, (3)

where βik and γik are constants, with discontinu-
ity points t1 < t2 < · · · < tk < · · ·, limk→∞ tk =
∞, and Hk(t) are Heaviside functions defined by

Hk(t) =
{

0, t < tk
1, t ≥ tk.

It can be easily seen from (3) that

Dui = 1+
∞∑

k=1

βikδ(t−tk), Dwi = 1+
∞∑

k=1

γikδ(t−tk),

where δ(t) is the Dirac impulsive function, which
means that the state of system (1) has jumps at
tk, k = 1, 2, · · ·.

Remark 2.1. For any aij ∈ [aij , aij ], and bij ∈
[bij , bij ], define

a
(0)
ij =

1
2

(
aij + aij

)
, a

(1)
ij =

1
2

(
aij − aij

)
, (4)

b
(0)
ij =

1
2

(
bij + bij

)
, b

(1)
ij =

1
2

(
bij − bij

)
. (5)



Then aij = a
(0)
ij + ∆aij , bij = b

(0)
ij + ∆bij , where

∆aij and ∆bij are uncertain parameter perturba-
tions, which satisfy |∆aij | ≤ a

(1)
ij , |∆bij | ≤ b

(1)
ij .

System (1), except for its uncertainty, is a gen-
eral framework for neural network models, which
includes some well-known networks as its special
cases. For instance, in system (1), if βjk = 0 and
γjk = 0, j = 1, · · · , n, k = 1, 2, · · · , then it reduces
to

y′i(t) =−aiPi(yi(t)) +
n∑

j=1

aijFj(yj(t))

+
n∑

j=1

bijGj(yj(t− τ)) + Ii, (6)

which is a typical continuous-time nonlinear neu-
ral network with time delay. Stability of system
(6), in the special case with Gj = Fj , has been
investigated in (Lu, 2000).

Similarly, if bij = 0, βjk = 0, and Pi(yi) = yi,
i, j = 1, · · · , n, k = 1, 2, · · · , then system (1)
reduces to

y′i(t) = −aiyi(t) +
n∑

j=1

aijFj(yj(t)) + Ii, (7)

which is the typical continuous Grossberg-Cohen-
Hopfied neural network model. Stability of sys-
tem (7) has been extensively studied (Civalleri
et al., 1993; Cohen and Grossberg, 1983; Fang
and Kincaid, 1996; Hopfield, 1982; Hopfield, 1984;
Matsuoka, 1992).

Also, if aij = 0, γjk = 0, and Pi(yi) = yi,
i, j = 1, · · · , n, k = 1, 2, · · ·, then system (1)
becomes

y′i(t) = −aiyi(t) +
n∑

j=1

bijGj(yj(t− τ)) + Ii, (8)

which is the typical continuous delayed Hopfield
neural network model and has been studied in, for
instance, (Baldi and Atiya, 1994; Gopalsamy and
He, 1994; Hou and Qian, 1998; Zhang et al., 1996).

In addition, if βjk = 0, γjk = 0, and if the
parameters aij , bij and functions Pi, Fj , Gj are
appropriately chosen, then system (1) reduces
to the delayed bidirectional associated memory
networks (BAM)(Gopalsamy and He, 1994) and
the cellular neural networks (CNN) with delay
(Carpenter et al., 1987; Civalleri et al., 1993).

A typical characteristic of the nonlinear impulsive
neural network system (1) that differs from most
existing models (Guan and Chen, 1999; Guan et
al., 2000) is its discontinuity in the form of im-
pulses. Therefore, to ensure that it can be success-

fully used to describe and to deal with various im-
pulsive phenomena, specially some evolution pro-
cesses involving impulses in the real word (Bainov
and Simeonov, 1989; Guan et al., 1995; Laksh-
mikantham et al., 1989), a detailed investigation
of this new model is very important.

In what follows, the concept of equilibrium of
the model is introduced and its global robust
exponential stability are first studied.

3. EQUILIBRIUM AND ITS GLOBAL
ROBUST EXPONENTIAL STABILITY

For simplicity, first consider system (1) in the
nominal situation, that is,

Dyi = −aiPi(yi) +
n∑

j=1

aijFj(yj)Duj

+
n∑

j=1

bijGj(yj(t− τ))Dwj + Ii, (1)′

where i = 1, · · · , n, ai, aij , and bij are given and
determined parameters.

Definition 3.1. A solution y(t) = (y1(t), · · · , yn(t))>

of system (1)′ is said to be an equilibrium solution,
if it satisfies the following equations:

−aiPi(yi(t)) +
n∑

j=1

aijFj(yj(t))Duj

+
n∑

j=1

bijGj(yj(t− τ))Dwj + Ii = 0, (9)

where t ∈ [tk−1, tk), i = 1, · · · , n and k = 1, 2, · · · .

Remark 3.1. (i) It is easy to see that if y(t) =
(y1(t), · · · , yn(t))> is an equilibrium solution of
system (1)′, then, in general, y(t) is a right-
continuous piecewise-constant vector-valued func-
tion. In fact, Eq. (9) implies that, for t ∈ [tk−1, tk)

y′i(t) =−aiPi(yi(t)) +
n∑

j=1

aijFj(yj(t))

+
n∑

j=1

bijGj(yj(t− τ)) + Ii = 0, (10)

since both u′j and w′j in system (1)′ exist on all
intervals [tk−1, tk). This immediately implies that
y(t) is a constant-valued vector in [tk−1, tk), and
that

y(t) = (y1(t), · · · , yn(t))>

:= (y1(tk−1), · · · , yn(tk−1))>, (11)

where t ∈ [tk−1, tk), y1(tk−1), · · · , yn(tk−1) are
constants. On the other hand, y(t) is a solution
of system (1)′, so that



yi(tk, t0,Ψ)− yi(tk − h, t0,Ψ)

=

tk∫

tk−h

Iids−
tk∫

tk−h

aiPi(yi(s))ds

+

tk∫

tk−h

n∑

j=1

aijFj(yj(s))duj(s)

+

tk∫

tk−h

n∑

j=1

bijGj(yj(s− τ))dwj(s) ,

where h > 0 is sufficiently small. As h → 0+, it
gives

yi(tk, t0,Ψ)− yi(t−k , t0,Ψ)

=
n∑

j=1

aijFj(yj(tk))βjk

+
n∑

j=1

bijGj(yj(tk − τ)) γjk , (12)

which usually causes a jump at the discontinuity
point tk.

(ii) For system (1)′, if βjk = γjk = 0, j = 1, · · · , n,
k = 1, 2, · · ·, then it reduces to the usual ordinary
differential system without impulses. Accordingly,
Definition 3.1 reduces to the usual definition of
equilibrium.

(iii) Apparently, the equilibrium solution defined
in Definition 3.1 is also applicable to the impulsive
systems without time-delay.

It is well known that stability of equilibrium play
an important role in the theory and applications
of neural networks. Furthermore, unavoidably net-
work parameter fluctuation and noise perturba-
tion exist, so it is essential to investigate the
robustness of the equilibrium stability for neural
network against such uncertainties. In doing so,
the equilibrium of the uncertain system is as-
sumed to be the same as that of the unperturbed
system. In this case, the equilibrium solution re-
mains to be a special solution of the system. In
this regard, an equilibrium of the interval system
(1) is defined as follows.

Definition 3.2. The function y∗(t) = (y∗1(t), · · · ,
y∗n(t))> is said to be an equilibrium solution of
system (1) if it is an equilibrium of system (1)′ for
any parameters aij ∈ [aij , aij ], and bij ∈ [bij , bij ].

As can be seen above, in general, the equilib-
rium solution of system (1) is a right-continuous
piecewise-constant vector-valued function. But,
if there exists a y = y0 such that F (y0) =
0, G(y0) = 0, and −AdP (y0) + I = 0, then sys-

tem (1) has a constant equilibrium y∗(t) ≡ y0,
where Ad = diag(a1, · · · , an), I = (I1, · · · , In)>,
P (y(·)) = (P1(y1(·)), · · · , Pn(yn(·)))>, F (y(·)) =
(F1(y1(·)), · · · , Fn(yn(·)))>, G(y(·)) = (G1(y1(·)),
· · · , Gn(yn(·)))>.

Example 3.1 Consider system (1) with n = 1:

Dy =−a1P1(y(t)) + a11F1(y(t))Du1

+b11G1(y(t− τ))Dw1 + I1,

where a1 = I1 > 0, a11 ∈ [a11, a11] = [−2, 3],
b11 ∈ [b11, b11] = [−3, 2], u1 and w1 are given
by (3), and P1(y) = siny, F1(y) = y + π

2 sin3y,
G1(y) = 4

π2 y2 + cos2y. It is easy to verify that
y = π

2 is an equilibrium solution of the system.

Definition 3.3. The equilibrium y∗(t) = (y∗1(t), · · · ,
y∗n(t))> of system (1) is said to be global ro-
bustly exponentially stable, if for any parameters
aij ∈ [aij , aij ], and bij ∈ [bij , bij ], the equilibrium
y∗(t) = (y∗1(t), · · · , y∗n(t))> of system (1) remains
to be global exponentially stable.

If y∗(t) = (y∗1(t), · · · , y∗n(t))> is an equilibrium of
system (1), let xi = yi − y∗i , i = 1, · · · , n. Then,

Dxi =−aipi(xi(t)) +
n∑

j=1

aijfj(xj(t))Duj

+
n∑

j=1

bijgj(xj(t− τ))Dwj , (13)

with i = 1, · · · , n, ai > 0, aij ∈ [aij , aij ], and
bij ∈ [bij , bij ], where

pi(xi(t)) = Pi(xi(t) + y∗i (t))− Pi(y∗i (t)),

fj(xj(t)) = Fj(xj(t) + y∗j (t))− Fj(y∗j (t)),

and

gj(xj(t− τ)) = Gj(xj(t− τ) + y∗j (t− τ))

−Gj(y∗j (t− τ)).

It is then clear that the robust stability of the
zero solution, x = 0, of system (13) corresponds
to the robust stability of the equilibrium y = y∗

of system (1). Therefore, one may simply consider
system (13) with initial conditions

xi(t) = φi(t), t0 − τ ≤ t ≤ t0, i = 1, · · · , n, (14)

where Φ(t) = col
(
φ1(t), · · · , φn(t)

)
are functions

of bounded variation and right-continuous on any
compact subinterval of [t0 − τ, t0].

Now, one is in a position to discuss the global
robust exponential stability of the uncertain non-



linear and delayed impulsive neural network (1),
or (13).

Assume that tk − tk−1 ≥ δ τ , δ > 1, τ > 0,
k = 1, 2, · · ·. For any functions pi, fi, and gi,
satisfying

z pi(z) ≥ 0, |p′i(z)| ≥ p0
i > 0,

|fi(z)| ≤ f0
i |z|, zfi(z) ≥ 0,

and

gi(z)| ≤ g0
i |z|, ∀ z ∈ R, (15)

where p0
i , f0

i and g0
i are constants, i = 1, · · · , n,

let

αk = max
1≤j≤n

{
n∑

i=1

(∣∣∣a(0)
ij

∣∣∣ + a
(1)
ij

)
|βjk| f0

j

}
, (16)

βk =
1

1− αk
,

γk = βk max
1≤j≤n

{
n∑

i=1

(∣∣∣b(0)
ij

∣∣∣ + b
(1)
ij

)
|γjk| g0

j

}
, (17)

where a
(0)
ij , a

(1)
ij , b

(0)
ij and b

(1)
ij are defined by (4) and

(5). Also, for constants ξi > 0, i = 1, · · · , n, let

a = min
1≤j≤n

{
aj p0

j − a+
ξ f0

j

}
,

b = max
1≤j≤n

{
n∑

i=1

ξi

ξj

(∣∣∣b(0)
ij

∣∣∣ + b
(1)
ij

)
g0

j

}
, (18)

aξ = max
1≤j≤n



ajj +

n∑

i=1,i 6=j

ξi

ξj

(∣∣∣a(0)
ij

∣∣∣ + a
(1)
ij

)


 ,

a+
ξ = max {0, aξ} . (19)

Theorem 3.1. Suppose that (15) is satisfied and
for k = 1, 2, · · ·,
(i) there exist constants ξi > 0, i = 1, · · · , n,

such that a > b > 0;
(ii) αk < 1;
(iii) βk +γkeλτ ≤ M for a constant M ≥ 1, where

λ is a positive solution of λ− a + beλτ = 0.

Then, ln(ξM)
δτ −λ < 0 implies that the zero solution

of system (13), namely, the equilibrium y = y∗ of
system (1), is globally robustly exponentially sta-

ble, where ξ:=
(

max
1≤i≤n

{ξi}
) / (

min
1≤i≤n

{ξi}
)

, αk,

βk, γk, a and b are defined in (16), (17), and (18),
respectively.

Remark 3.2. Apparently, the dynamical behavior
of the uncertain nonlinear and delayed impulsive
neural network (1), or (13), mainly depends on
the bounds of perturbation intervals, aij , aij , bij

and bij , the properties of the nonlinear functions,
pi, fi and gi, and the functions ui and vi which
caused the impulsive jumps to the neural network.
So, it is natural to see that some key param-
eters, such as a, b, αk, βk and γk, appear in
Theorem 3.1, which are given on the basis of the
aforementioned terms. In some sense, the param-
eters αk, βk and γk characterize the impulsive
effects associated with the perturbation intervals
and the state variables of neural network (13) at
the discontinuity points tk. Since neural network
(13) has both uncertain interval perturbations and
impulsive perturbations at discontinuity points
tk, it is necessary that some conditions, such as
Assumptions (ii) and (iii), are imposed on the
parameters of the neural network at tk, so as
to guarantee the stability of the overall neural
network. Similarly, parameters a and b, as well as
Assumption (i), characterize the intrinsic relations
between the nonlinear functions and uncertain
intervals of (13).

In addition, in Theorem 3.1, one may take ξi =
1, i = 1, · · · , n, so as to draw a corresponding
conclusion for which the conditions are easier to
verify.

Example 3.2 Consider system (13) with n = 2:

Dxi =−aipi(xi(t)) + ai1f1(x1(t))Du1

+ai2f2(x2(t))Du2 + bi1g1(x1(t− τ))Dw1

+bi2g2(x2(t− τ))Dw2, i = 1, 2, (20)

where tk − tk−1 ≥ δτ with τ = 1
2 , t0 ≥ 0, uj

and wj are given by (3) with β1k = 1
6 (−1)k,

β2k = 1
6 (−1)k+1, γ1k = 1

3 (−1)k+1, and γ2k =
1
3 (−1)k, and a1 = 7, a2 = 8, aij ∈ [aij , aij ], and
bij ∈ [bij , bij ] with [a11, a11] = [−1, 1], [a12, a12] =
[0, 2], [a21, a21] = [1, 2], [a22, a22] = [− 1

2 , 1],
[b11, b11] = [−1, 1], [b12, b12] = [0, 2], [b21, b21] =
[−2, 0], [b22, b22] = [0, 1], and p1(z) = 3.35z−sinz,
p2(z) = 4z +sinz, fi(z) = gi(z) = arctgz, i = 1, 2.

It is easy to compute from (15)-(19) that p0
1 =

2.35, p0
2 = 3, f0

i = g0
i = 1, i = 1, 2, αk = 1

2 ,
βk = 2, γk = 2.

Take ξi = 1, i = 1, 2, · · · , n, then a = 16.45, b = 3.
Obviously, a > b > 0, αk < 1, and βk + γkeλτ ≤
M = 11 with λ = 3 satisfying λ − a + beλτ = 0,
that is, the conditions (i)-(iii) of Theorem 3.1 are
satisfied. Therefore, when δ ≥ 1.65, ln(M)

δτ − λ <
−0.1, which implies from Theorem 3.1 that the
zero solution of system (20) is globally robustly
exponentially stable.



4. CONCLUSIONS

This paper has formulated and analyzed an in-
terval delayed nonlinear impulsive neural net-
work model. This new model is useful for de-
scribing some evolutionary processes that have
sequential abrupt changes and parameter per-
turbations. Such networks cannot be appropri-
ately represented by either purely continuous or
purely discrete additive networks; therefore, the
new model is important for mathematical mod-
elling and potential engineering applications in
the future. Some fundamental issues such as the
network equilibrium and the robust exponential
stability of the equilibrium have also been studied
in detail, with some explicit results derived.

REFERENCES

Bainov, D. D. and P. S. Simeonov (1989). Stability
Theory of Differential Equations with Impulse
Effects: Theory and Applications. Chichester.
Ellis Horwood.

Baldi, P. and A. F. Atiya (1994). How delays affect
neural dynamics and learning. IEEE Trans.
on Neural Networks 5, 612–621.

Cao, J. D. and D. M. Zhou (1998). Stability
analysis of delayed cellular neural networks.
Neural Networks 11, 1601–1605.

Carpenter, G. A., M. A. Cohen and S. Grossberg
(1987). Computing with neural networks. Sci-
ence 235, 1226–1227.

Civalleri, P. P., M. Gilli and L. Pandolfi (1993).
On stability of cellular neural networks with
delay. IEEE Trans. on Circuits and Systems
40, 157–164.

Cohen, M. A. and S. Grossberg (1983). Absolute
stability of global pattern formation and par-
allel memory storage by competitive neural
networks. IEEE Trans. on Sys. Man and Cy-
bern. 13, 815–826.

Fang, Y. and T. G. Kincaid (1996). Stability
analysis of dynamical neural networks. IEEE
Trans. Neural Networks 7, 996–1006.

Gopalsamy, K. and X. Z. He (1994). Delay-
independent stability in bidirectional associa-
tive memory networks. IEEE Trans. on Neu-
ral networks 5, 998–1002.

Grossberg, S. (1988). Nonlinear neural networks:
Principles, mechanisms, and architectures.
Neural Networks 1, 17–61.

Guan, Z. H. and G. Chen (1999). On delayed
impulsive hopfield neural networks. Neural
Networks 12, 273–280.

Guan, Z. H. and Y. Q. Liu (1992). Existence and
uniqueness of solutions for nonlinear measure
differential systems with delays. In: Proceed-
ings of Int. Confer. on Model. Simul. and
Control. Vol. 1. USTC Press. pp. 62–70.

Guan, Z. H., J. Lam and G. Chen (2000). On im-
pulsive autoassociative neural networks. Neu-
ral Networks 13, 63–69.

Guan, Z. H., Y. Q. Liu and X. C. Wen (1995). De-
centralized stabilization of singular and time-
delay large-scale control systems with im-
pulsive solutions. IEEE Trans. on Automatic
Control 40, 1437–1441.

Hopfield, J. J. (1982). Neural networks and phys-
ical systems with emergent collective compu-
tational abilities. In: Proc. of the National
Academy of Sciences. Vol. 79. pp. 2554–2558.

Hopfield, J. J. (1984). Neurons with graded re-
sponse have collective computational proper-
ties like those of two-state neurons. In: Proc.
of the National Academy of Sciences. Vol. 81.
pp. 3088–3092.

Hou, C. and J. Qian (1998). Stability analysis
for neural dynamics with time-varying delays.
IEEE Trans. on Neural Networks 9, 221–223.

Lakshmikantham, V., D. D. Bainov and P. S.
Simeonov (1989). Theory of Impulse Differ-
ential Equations. World Scientific Pub.. Sin-
gapore.

Liao, X. and J. Yu (1998). Robust stability
for interval hopfield neural networks with
time delay. IEEE Trans. on Neural Networks
9, 1042–1045.

Liu, Y. Q. and Z. H. Guan (1996). Stability, Sta-
bilization and Control of Measure Large-Scale
Systems with Impulses. The South China Uni-
versity of Technology Press. Guangzhou.

Lu, H. (2000). On stability of nonlinear
continuous-time neural networks with delay.
Neural Networks 13, 1135–1144.

Matsuoka, K. (1992). Stability conditions for non-
linear continuous neural networks with asym-
metric connection weights. Neural Networks
5, 495–499.

Michel, A. N. and D. L. Gray (1990). Analysis and
synthesis of neural networks with lower block
triangular interconnecting structure. IEEE
Trans. Circuits Syst. 37, 1267–1283.

Pandit, S. G. and S. G. Deo (1982). Differential
Systems Involving Impulses. Spring-Verlag.
New York.

Qiao, H., J. Peng and Z. B. Xu (2001). Nonlin-
ear measures: a new approach to exponen-
tial stability analysis for hopfield-type neural
networks. IEEE Trans. on Neural Networks
12, 360–370.

Zhang, Y., S. M. Zhong and Z. L. Li (1996).
Periodic solution solutions and stability of
hopfield neural networks with variable delays.
Int. J. of Systems Science 27, 895–901.


