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Abstract: This article presents a comparison of commercial and model based predictive 
control strategies aimed at optimizing efficiency of classical heating systems used in 
greenhouse temperature control. Two kind of heating systems are considered: aerial pipes 
with hot water and air-fan heaters. By using simple linearized models of the system 
around the predefined setpoints and a generalized predictive control strategy, the 
performance is improved without requiring modifications in the heating systems. The 
main strength of this paper lies in the fact that the MPC algorithm has been tested in a 
greenhouse. Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
Temperature control in greenhouses is a practical 
problem of considerable interest and economic 
significance since the primary objective of 
greenhouses is to produce agricultural products 
outside the cultivation season, representing the fuel-
based heating costs the 30% of the overall 
operational costs in the greenhouse industry. 
Generally, greenhouses are heated by hot water that 
circulates in pipes or by hot air that is distributed by 
ducts. In (Baille and von Elsner, 1988), six types of 
heating systems were presented and discussed: (1) 
heat exchangers in the soil, (2) heat exchangers laid 
directly on the ground, (3) aerial pipes near the 
ground or benches, (4) fan heater units, (5) roof 
heating systems, (6) a combination of two of these. 
This paper presents the application of Model 
Predictive Control (MPC) strategies to types (3) and 
(4). Regulating air temperature in the greenhouse is 
important for both vegetative growth and fruiting. To 
determine heating requirements, it is essential to 
know the minimum temperature requirements for the 
crop, the lowest outdoor temperature that might be 
expected, and the surface area of the greenhouse. 

Heat loss also will be affected by wind and site 
exposure. Due to the favourable weather conditions 
in the Mediterranean areas, the required energy to 
provide adequate temperature integrals to the crop 
during daylight is provided by the Sun. Moreover, 
during the day the problem is to avoid large values of 
the temperature and thus natural and forced 
ventilation are used. During the night, the 
temperature setpoints are lower and while the 
temperature remains over these, the heating is not 
used. The most widely used heating systems in 
Mediterranean greenhouses are based on hot air, 
distributed in the greenhouse via perforated 
polyethylene ducts (Teitel et al., 1999). Recently, 
there has been a growing trend to install hot-water 
pipe systems in new greenhouses.  
 
Several authors have used different greenhouse 
heating climate control strategies (mainly by aerial 
pipes). In (Udink ten Cate, 1983), several PI control 
structures were tested and compared to model 
reference adaptive control in a Venlo greenhouse 
with tomato crop, showing good steady-state 
behaviour but large overshoots without optimizing 
efficiency. In (Davis and Hooper, 1991), a cascaded 



 

     

PI control is introduced and tested in a Venlo 
greenhouse improving the results obtained with 
classical PI control. In (Young and Chotai, 2001) a 
PIP control scheme is used with a model of a Venlo 
greenhouse, while Tantau and co-workers (Tantau, 
1985; Tantau, 1993; El Ghoumari et al., 2002) used 
feedforward controllers and extended linearized 
predictive controllers obtaining also acceptable 
results. In (Boaventura et al., 1997; Coelho et al., 
2002) used both PID and GPC controllers in a tunnel 
greenhouse in Portugal, obtaining better results with 
the GPC approach, accordingly with the results of 
(Nielsen and Madsen, 1996) in cold climates. The 
most relevant experiences with receding horizon 
optimal controllers have been reported by van 
Straten and co-workers (van Straten et al., 1999; van 
Straten et al., 2000; van Straten et al., 2002; Tap et 
al., 1996a; Tap et al., 1996b; Tap, 2000), 
demonstrating the feasibility and features of this kind 
of control technique in a Venlo greenhouse in the 
Netherlands. Seginer and co-workers (Gutman et al., 
1993; Ioslovich et al., 1996) studied different 
techniques using linear programming and 
Pontryagin’s principle to minimize heating costs.  In 
(Rodriguez et al., 2003) the integration of heating 
within a hierarchical crop production control scheme 
is treated. Many authors only report results in 
simulation. Gain scheduling control algorithms are 
explained in (Kamp and Timmerman, 1996), without 
providing any experimental results. Decentraliced 
MPC controllers have been tested under simulation 
by (Kyriannakis et al., 2002), while (Piñon et al., 
2002) used several MPC control schemes, including 
embedded feedback linearization and robust control. 
In (Alessandri et al., 1994) neural network based 
predictive controllers and optimal controllers are 
used to cope with the temperature control problems. 
As seen before, many authors have selected MPC 
techniques for heating control purposes. There are 
some reasons which may justify the use of a MPC 
scheme when controlling greenhouse heating, as the 
problem is not only related with a classical 
regulatory-disturbance rejection control loop, but 
also to the costs associated to the control actions 
(fuel consumption).  In this sense, the use of a cost 
function as that used by MPC algorithms helps the 
costs associated to the control actions to be taken 
into account. Although the delay time in this kind of 
applications is of the same order of the dominant 
time constant of the system, it influences the 
consumption. Moreover, although many control 
strategies can cope with the disturbance rejection 
problem (mainly changes in outside temperature and 
wind speed), MPC approaches offer a natural way to 
deal with feedforward control. System constraints 
can be taken into account in the design and 
optimisation process.  
 
The paper is organized as follows: section 2 presents 
a brief description of the greenhouses used to 
perform the experiences. Section 3 outlines the 
applied control techniques. Section 4 shows some 
illustrative experimental results. Finally, section 5 
presents the conclusions. 

2. MATERIALS AND METHODS 
 
2.1 Greenhouses 
 
Two greenhouses have been used in the experiences 
shown in this paper. The first one has two symmetric 
curved slopes roof (gothic roof) and five North-South 
oriented naves with dimensions 7.5x40 m (1500 m2). 
Different sensors where installed to measure inside 
air temperature and humidity, inside global and PAR 
radiation and CO2 concentration. Also, a 
meteorological outside station has been installed with 
the same previous sensors plus wind direction and 
speed sensors, and a resistive rain sensor. The 
installed control actuators (figure 1(a)) consist of 
vents, a shade screen, and a hot water pipe heating 
system, composed by a boiler, a burner, mixing 
valves, pumps, and heating pipes. The power of the 
heating system is 2000000 Kcal using a constant 
water temperature of 80ºC. The main steel pipe has 
8.2 cm of diameter and the secondary one 5.9 cm. A 
2.5 HP pump is used to produce 25 m3h-1 of water 
flow. The position of the vents, screens and heating 
valves, and the status of the pumps and burner are 
measured. The sample and control time is 1 min. 
 
The second one is a plastic cover greenhouse of 38.7 
m length, 23.2 m width and height from 2.8 m to 4.4 
m). It is composed by automated zenital and lateral 
vents, the first ones with a maximum aperture angle 
of 45º and the last ones with dimensions 37 m length,  
and 1.2 m aperture. A forced-air heating system RGA 
95 KW has been used for heating purposes (figure 
1(b)), with stainless steel body, including chimney, 
thermostat controlled environment by relays and a 
500 l Polyethylene diesel oil deposit. The installed 
sensors are: soil temperature both at 40 cm and 3 cm 
depth, soil cover temperature, temperature and 
relative humidity of the air (1.5 m over the soil), 
leaves temperatures (4 sensors), plastic cover 
temperature (4 sensors), air velocity inside the 
greenhouse, inside CO2, crop substrate temperature, 
and global and PAR radiation. A meteorological 
station is also installed at the outside measuring 
temperature, relative humidity, rain, wind speed and 
direction, and global and PAR radiation. 
 
2.2 Heating by aerial pipes 
 
The pipes heated by hot water circulating though 
them, transmit heat to the air by convection, 
producing an increase in the greenhouse inside 
temperature.  Then, the control problem consists in 
calculating the required temperature of the water 
within the pipes to meet inside air setpoint 
requirements. In order to perform this task, the 
system has one three way valve to mix the water of 
the boiler (constant temperature) with the water 
returning from the greenhouse in a cascade structure 
(figure 2), where the temperature measurement is 
acquired near the boiler. The actuators have 
constraints as the water temperature through the 
pipes is lower than the water temperature in the 
boiler and higher than that of the greenhouse air. 
 



 

     

 
(a) Greenhouse heated by aerial pipes 

 
(b) Greenhouse heated by forced-air heaters 

Fig. 1.Greenhouses used in the experiences 
 

 

Fig. 2. Schematic diagram of the aerial pipes heating 
system and control blocks 

 
2.3 Heating by forced-air heaters 
 
The system is composed by an indirect combustion 
hot air generator using a heat exchanger to separate 
exhaust gases from hot air that is introduced in the 
greenhouse (figure 3). The system incorporates three 
units: a combustion chamber supplied with fuel oil, 
the heat exchanger and a fan to extract the exhaust 
gases throughout a chimney. The efficiency is 
between 80 and 90%. 
 

 
Fig. 3. Schematic diagram of the air heating system 
 

3. CONTROL ALGORITHMS 
 
3.1 Commercial and classical control algorithms 
 
Commercial hot water heating systems are usually 
controlled by proportional or cascaded PI+parallel 
feedforward controllers to cope with outlet 

disturbances (mainly outside temperature and wind 
speed) like those shown in figure 2, while on/off 
control with dead/zone is used in forced-air heaters. 
Commercially available control algorithms have been 
described in horticultural engineering textbooks (e.g., 
Kamp and Timmerman, 1996). Although this system 
is nonlinear (Rodríguez, 2002), it can be linearized 
when operating around a setpoint for control 
purposes, as a first order system with a delay 
between 7 and 11 min, a time constant between 7 and 
13 min, and a static gain between 0.07 and 0.1 for 
this installation. The same conclusions can be 
obtained when linearizing a model of the system 
obtained from physical principles (Rodríguez, 2002). 
Notice that disturbances affect the heating 
performance. During the night, the greenhouse looses 
heat through the cover (conduction/convection), 
depending on the outside temperature and wind 
speed. Thus, ideally the controller must take into 
account the outside climatic conditions to calculate 
the water temperature in the pipes. Transfer functions 
can also be found relating these disturbances to 
changes in inside air temperature, to be used for 
feedforward control purposes. In other cases, a 
feedforward term based on first principles models 
can also be used (Rodríguez et al., 2001).  
 
3.2 Model based predictive control schemes 
 
In this work, a Generalized Predictive Control (GPC) 
control approach has been used (Clarke et al., 1987). 
Using a model of the process at each sampling 
instant, the future outputs are predicted for a given 
horizon (ŷ(t+k|t), k=1...N) and substituted within an 
objective function to compute the future controls 
(u(t+k|t), k=0...N-1), while taking process constraints 
into account. Following the receding horizon 
approach, the first control signal calculated is 
implemented, then the horizon is moved ahead, and 
the procedure is repeated in the next sampling instant 
as the new output is known (all the sequences are 
updated). A CARIMA model (Clarke et al., 1987) 
has been used obtained from transfer functions 
relating greenhouse temperature to changes in 
heating and disturbances (mainly outside temperature 
and mean wind speed) when operating around a 
particular setpoint. Both empirical transfer functions 
and obtained by linearization of a nonlinear climate 
model (Rodríguez, 2002) have been used. The 
classical GPC cost function has been implemented 
and constraints have been taken into account 
(Guzmán et al., 2004). 
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In this cost function, where E{.} is the mathematical 
expectation, ŷ(t+j|t) is an optimal system output 
prediction sequence performed with data known up 
to instant t, ∆u(t+j-1) is a sequence of future control 
increments, obtained from cost function 
minimization, N1 and N2 are the minimum and 
maximum prediction horizons, Nu is the control 
horizon, and λ(j) and δ(j) are weighting sequences 
that penalize the future tracking and control efforts, 
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respectively, along the horizons (here δ equals 1 and 
λ is a user-chosen constant). The reference trajectory 
w(t+j) can be the setpoint itself or a smooth 
approximation from the present value of output y(t) 
to the setpoint, usually implemented as a first order 
filter. If no constraints are taken into account, as the 
model is linear and the optimization criterion is 
quadratic, an explicit solution can be found. 
Otherwise, a quadratic programming (QP) 
optimization algorithm is used.  
 
For controlling the forced-air heaters, due to the 
discrete nature of the actuator, two possible ways of 
implementation have been considered, providing 
very similar results: a branch and bound strategy 
previously used by the authors within the control of 
photobioreactors framework (Berenguel et al., 2004) 
and a PWM approximation in which the activation of 
the actuator is done between 4 min (1%) and 10 min 
(100%) using a control time of 1 min. When the 
tracking error is negative the control is switched off. 
Figure 4 shows the basic MPC strategy taking into 
account the discrete nature of the control signal in 
this problem. The predictions along the prediction 
horizon using possible input values in the control 
horizon are used to evaluate the following objective 
function: 
 

 

 
(2)

ymin ≤ y ≤ ymax; u ∈ {umin, umax}={0,1}; ∆u ∈ {∆umin, ∆ 
umax}={0,1}; {0,1}:{off, on} 

 
 

Those future input values (and associated 
predictions) minimising the cost function are selected 
and only u(t) is implemented at the current sampling 
time. In this case, the values of the control actions 
have been used (weighted by the control effort 
weighting factor λ) as they are related with the costs 
associated to fuel consumption. Figure 4 illustrates 
the basic idea of this technique for the control space 
discretized into two alternatives (on-off control) and 
lower prediction horizon N1=2.  
 

 

Fig. 4. Branch-and-bound GPC. 
 

4. EXPERIMENTAL RESULTS 
 
4.1. Heating by aerial pipes 
 
Figure 5 shows the results when controlling the 
greenhouse using the control scheme in figure 2, 
saturating the pipes temperatures at a maximum of 
55ºC during three nights. Two kind of linearized 
models have been used to design the controllers: a 
first order linear model relating inside temperature 
with heating has been obtained for an operating point 
defined by heating status (setpoint) and outside 
disturbances (temperature and wind speed levels), 
thus no explicit models of the disturbances have been 
considered. In a second stage, approximated linear 
models of how disturbances affect the inside 
temperature have been obtained using least-squares 
identification over a set of data. In both cases 
acceptable results have been obtained when the 
linearized models have been used to design the 
controllers. The tuning of the master controller has 
been done using open loop Ziegler-Nichols rules 
around an operating point of 17ºC, with a mean wind 
speed of 6 ms-1 and with an outlet mean temperature 
of 11ºC (typical in this zone from December to 
February). A proportional gain of 12.8 and an 
integral time of 300 min have been obtained.  The 
same procedure has been used to tune the slave 
controller. As seen in the figure, the results are quite 
acceptable as in this case the actuator is continuous 
and the control scheme is appropriate for this kind of 
application, although it should be desirable to 
diminish the variance of the temperature signal. A 
classical constrained GPC strategy has been also 
implemented to calculate the desired temperature of 
the water pumped through the pipes using the same 
linear models. The parameters of the GPC are: 
N1=11, N2=30, Nu=30 (min), δ=1 and λ=0.001. The 
sampling time is 1 min and the control signal has 
been saturated to 55ºC. The unknown outside 
conditions over the prediction horizon have been 
considered constant and equal to the actual measured 
value. Other different controller configurations have 
been tested obtaining similar results. Figure 6 
presents illustrative results during four nights (the 
last one leading to actuator saturation). As is to be 
expected, the differences between both techniques 
are not quite considerable, although the predictive 
nature of the GPC algorithm and the fact that the 
constraints surpassing can be anticipated produce 
slightly better results that can help to save energy. 
 
4.2. Heating by forced air heaters 
 
In this case, the tuning knobs of the GPC algorithms 
were selected taking into account the characteristic 
dynamics of the system (static gain 0.04ºC%-1, time 
constant of about 15 min, representative delay of 2 
min and settling time of 30 min): N1=3, N2=30 and 
Nu=30. After several simulations and real tests, the 
selected values are: N2=10 and Nu=6, as no 
improvements are observed when increasing these 
values. The value of N2 is a trade-off between 
tracking characteristics and number of activations of 
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the controller. As in the previous case, two kind of 
implementations have been done, one without 
explicitly taking into account disturbances (then the 
model is only valid for a range of operating 
conditions) and other including the linear models of 
the disturbances within the GPC framework. In this 
last case, again the unknown outside conditions over 
the prediction horizon have been considered constant 
and equal to the actual measured value. 
 
 
 
 
 
 
 
 
 
 
 

(a)  Inside air temperature evolution 

8000 8500 9000 9500 10000 10500 11000 11500
25

30

35

40

45

50

55

60

time (min)

tu
be

s 
te
m
pe

ra
tu
re

 (º
C
)

 
(b)  Pipes temperature evolution 

Fig. 5. Results under heating pipes cascade control 
 

 
 
 
 
 
 
 
 
 
 

(a)  Inside air temperature evolution 
 
 
 
 
 
 
 
 
 

(b)  Pipes temperature evolution 
Fig. 6. Results under heating pipes GPC control 
 
Figure 7 shows a typical profile of the control using 
an on/off controller with dead zone of ±0.5 and 
sample time of 10 min. Many tests have been 
performed modifying the activation time till the 
minimum allowed by the vendor (4 min) and similar 
results have been obtained regarding number of 
commutations and activation times.  Figure 8 shows 
representative results of the performance of the GPC-
PWM controller (similar to those of the branch-and-
bound algorithms). This controller helps to achieve 

about 20% of saving in fuel consumption, although it 
has been observed that, even using different tuning 
knobs in the GPC algorithm and different sample 
times and dead-zones in the on/off control, the GPC 
controller produces more commutations and less 
consumption than the on/off controller, the number 
of commutations being within the ranges 
recommended by the supplier. As an example, during 
a typical night the number of minutes during which 
the heating system is on with the on/off control is 
221 min (11.27 € cost), while with the GPC 
controller is 164 min (8.36 € cost). There might also 
be effects on the crop, but not evident on the 
relatively short time scales used here. 
 

 

Fig. 7. On/off control with dead zone 
 

 
 
 
 
 
 
 
 
 
 

(a)  Inside air temperature evolution 
 
 
 
 
 
 
 
 

(b)  Continuous control signal 
 
 
 
 
 
 
 
 
 

(c)  Discrete control signal 
Fig. 8. Results using the PWM GPC  
 
It is common textbook knowledge that almost any 
control scheme will do better than an on-off control 
scheme. So, the comparison of MPC with an on-off 
controller may not be very convincing (despite 
decades of research, this point has not yet been fully 
accepted in horticultural industry, e.g. forced air 
heaters still have on-off control, today). The effects 
of outdoor weather conditions such as outdoor 
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temperature and wind speed have a relatively low 
frequency behaviour and a simple well tuned PI-
algorithm could in principle do the job equally well. 
For instance, in figure 9, a comparison between the 
responses of a PI-PWM+antiwindup controller and 
that of a GPC-PWM controller without incorporating 
models of the disturbances are shown using a 
validated nonlinear model of the greenhouse 
(Rodríguez, 2002). As can be seen, at the beginning 
of the night the GPC controller anticipates the 
control action, while at the end of the night the 
control signals are similar in the case of PI and GPC 
controllers, and thus the operating costs. This is an 
expected result as the PI and the GPC are based on 
the same model and no input or output constraints 
are violated, although in this case the λ parameter 
tuning modulates the tradeoff between costs and 
tracking. The advantages of GPC are more evident 
when reliable system and disturbance models are 
used and the operating conditions are such that 
minimum inside temperature constraints are violated. 
 

 
 
 
 
 
 
 
 
 
 
Fig. 9. Comparing PWM GPC and PI 
 

5. CONCLUSIONS 
 
The application of classical and GPC techniques to 
control greenhouse heating has been treated in this 
paper in order to analyze and compare the 
economical savings that can be achieved when 
compared to classical control techniques.  
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