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Abstract: We recently introduced a new stochastic Petri net model called “batch 
deterministic and stochastic Petri nets” (BDSPNs) capable of describing the 
synchronization of discrete and batch token flows in discrete batch processes. It is a 
powerful formal model for the study of inventory systems and supply chains where 
materials are processed or ordered in finite discrete quantities (batches) and many 
operations such as inventory replenishment, manufacturing and distribution are usually 
performed in a batch way because of the batch nature of customer orders and/or in order 
to take advantages of the economies of scale. In this paper, the modelling and analysis 
powers of the model are demonstrated through inventory systems. We show particularly 
how to model and evaluate the performance of a continuous review (s, S) inventory 
system with stochastic and batch demand using BDSPNs. Copyright © 2005 IFAC 
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1. INTRODUCTION  

 
Discrete batch processes play an important role in 
industry. It exists in manufacturing systems, 
inventory systems and supply chains where materials 
are processed in finite quantities (batches), and many 
operations such as inventory replenishment, 
manufacturing and distribution are usually performed 
in a batch way because of the batch nature of 
customer orders and/or in order to take advantages of 
the economies of scale. Discrete properties of batch 
processes render their design and operation 
extraordinarily difficult, and pose challenging issues 
in system design and operation control. Issues such 
as analysis and optimization of these processes need 
a relevant batch model and analysis methods which 
can grasp the batch nature of the systems. The model 
should be able to explicitly describe the batch sizes 
of different operations in a batch process.  
 
Petri nets have been recognized as a powerful tool 
for modelling and analysis of discrete event systems. 

While Petri nets have been studied for more than 40 
years (Zurawski et al. 1994), they played a relatively 
minor role in modelling and analysis of discrete 
batch processes in inventory systems and supply 
chains. Supply chains are modelled by using colored 
Petri nets (Van der Aalst et al. 1992), where every 
entity in the chain is modelled by a block with action, 
resource, and control, which is a subnet of the 
colored Petri net model. Supply chains are also 
modelled by using generalized stochastic Petri nets 
(Viswanadham et al. 2000). For inventory systems 
with independent demand, entities of supply chain, 
they are modelled by using First-order hybrid Petri 
nets that combine fluid and discrete event dynamics 
(Balduzzi et al. 2000; Furcas et al. 2001). These Petri 
net models, however, ignore an important feature of 
these systems. That is, operations such as inventory 
replenishment and distribution are usually performed 
in a batch way. We recently introduced a new 
stochastic Petri net model called “Batch 
Deterministic and Stochastic Petri nets” (BDSPNs) 
capable of describing the synchronization of discrete 



     

and batch token flows in discrete batch processes. It 
is a powerful formal tool for modelling and analysis 
of inventory systems and supply chains (Chen et al. 
2002, 2003). Our model is a discrete Petri net model, 
rather than a hybrid Petri net model. It thus keeps the 
simplicity of discrete Petri nets.  
 
In the remainder of this paper, the model is 
introduced, its novelty for modelling discrete batch 
processes is illustrated, and some fundamental 
concepts and analysis methods of the model are 
presented. As application, a continuous review (s, S) 
inventory system with stochastic and batch demand 
and stochastic transportation time, is modelled and 
its performance is evaluated analytically using 
BDSPNs. 
 
 

2. THE BDSPN MODEL  
 
BDSPNs are developed by extending Deterministic 
and stochastic Petri nets (DSPNs) (Lindemann, 
1998) with batch places and batch tokens. In a 
BDSPN, there are two types of places, discrete 
places and batch places. Tokens in a discrete place 
are viewed indifferently as in standard Petri nets, 
while tokens in a batch place, called batch tokens, 
may have different sizes and are viewed as different 
individuals. Different ways are used to represent the 
marking (state) of a discrete place and the marking of 
a batch place. The first marking is represented by a 
nonnegative integer as in standard Petri nets, while 
the second marking is represented by a set of 
nonnegative integers. The set may contain identical 
elements (multi-set) and each integer in the set 
represents a batch token with a given size. We use a 
vector µ to represent the marking of a BDSPN, 
where µ(p) is a nonnegative integer for a discrete 
place p and a set of nonnegative integers for a batch 
place p. This marking, called µ-marking, represents 
the state of the BDSPN. Moreover, for defining 
BDSPNs, another type of marking, called M-
marking, is also introduced. For each discrete place, 
its M-marking is the same as its µ-marking, while for 
each batch place its M-marking is defined as the total 
size of the batch tokens in the place. 
 
2.1 Formal definition. 
 
Formally, a batch deterministic and stochastic Petri 
net (BDSPN) is specified as a nine-tuple: 
 

BDSPN= (P, T, I, O, V, W, Π, D, µ0) (1) 
 

where: 
P = Pd ∪  Pb is a finite set of places consisting of 
discrete places in Pd and batch places in Pb.  
T = Ti∪ Td∪ Te is a finite set of transitions consisting 
of immediate transitions in Ti, deterministic 
transitions in Td, and exponentially distributed 
transitions in Te.  
I ⊆  (P×T), O ⊆  (T×P), and V⊆  (P×Ti) define the 
input arcs, the output arcs and the inhibitor arcs of 
the transitions, respectively. It is assumed that only 
immediate transitions are associated with inhibitor 
arcs, i.e., V⊆  (P×Ti), and the inhibitor arcs and the 
input arcs are two disjoint sets.  

W defines the weights of the input, output and 
inhibitor arcs that may depend on the current M-
marking of the net.  
Π is the firing priority function which assigns a 
priority to each transition. It is assumed that timed 
transitions have the lowest priority, i.e., Π(t) = 0 if t∈  
Td∪ Te. For immediate transitions, Π(t) ≥ 1. 
D defines the firing delay associated with each timed 
transition. Each deterministic timed transition t∈ Td is 
associated with a constant firing delay and each 
exponentially distributed timed transition t∈ Te is 
associated with a mean firing rate λi.  
µ0 is the initial µ-marking of the net.  
 
In graphical representation of the net, discrete places 
and batch places are represented by single circles and 
squares with an embedded circle, respectively. 
Immediate, deterministic, and exponentially 
distributed transitions are represented by thin bars, 
filled rectangles, and empty rectangles, respectively. 
Inhibitor arcs are represented by arrows ending with 
a small circle. A transition t is said to be a batch 
transition (resp. a discrete transition) if it has at least 
one input batch place (resp. if it has no input batch 
place). Discrete tokens are represented by dots, while 
batch tokens are represented by Arabic numbers that 
indicate their sizes (see Fig.1). In the following, the 
set of input places, the set of output places, and the 
set of inhibitor places of transition t are denoted by •t, 
t•, and °t, respectively, where •t  = { p | (p, t) ∈  I }, t• 
= {p | (t, p) ∈  O}, and  °t  = {p | (p, t) ∈  V}. We 
denote by w(i, j) the weight of arc (i, j) in the net. 
 
2.2 Enabling and Firing rules. 
 
Two types of transition firing called “batch firing” 
and “discrete firing” govern the state evolution of the 
net and synchronize discrete and batch token flows.  
 
Discrete Enabling and Firing. In this case, a 
transition t has no batch input place. It is said to be 
enabled at µ-marking µ (its corresponding M-
marking M) if and only if: 
 

( ) ( ),         ,p t M p w p t•∀ ∈ ≥  (2) 
( ) ( ),         ,p t M p w p t∀ ∈ <  (3) 

 

The discrete firing of t leads to a new µ-marking µ’: 
 

( ) ( ) ( ):           ' ,p t µ p µ p w p t•∀ ∈ = −  (4) 
( ) ( ) ( ):     ' ,dp t P µ p µ p w t p•∀ ∈ ∩ = +  (5) 

( ) ( ) ( ){ }:   ' ,bp t P µ p µ p w t p•∀ ∈ ∩ = +  (6) 
 

The firing rules (4) and (5) are the same as those for 
a transition in a standard Petri net. For each output 
batch place p, after the firing of transition t, a batch 
token with the size equal to the weight w(p, t) will be 
created ((6)). 
  
Batch Enabling and Firing. In this case, a transition t 
has at least one input batch place. It is said to be 
enabled at µ-marking µ if and only if there is a batch 
firing index (positive integer) q∈ IN (q>0) such that: 
 

( ) ( ), :    ,bp t P b µ p q b w p t•∀ ∈ ∩ ∃ ∈ =  (7) 



     

( ) ( ),            ,dp t P M p q w p t•∀ ∈ ∩ ≥ ×  (8) 
( ) ( ),                  ,p t M p w p t∀ ∈ <  (9) 

 

The batch firing of t leads to a new µ-marking µ’:  
 

( ) ( ) ( ): ' ,dp t P µ p µ p q w p t•∀ ∈ ∩ = − ×  (10) 
( ) ( ) ( ){ }: ' ,bp t P µ p µ p q w p t•∀ ∈ ∩ = − ×  (11) 
( ) ( ) ( ): ' ,dp t P µ p µ p q w t p•∀ ∈ ∩ = + ×  (12) 
( ) ( ) ( ){ }• : ' ,bp t P µ p µ p q w t p∀ ∈ ∩ = + ×  (13) 

 
A batch transition is enabled if and only if: 1) Each 
batch input place of the transition has a batch token 
with the batch firing index q common to all batch 
input places ((7)), 2) Each discrete input place of the 
transition has enough tokens to simultaneously fire 
the transition for a number of times given by the 
index ((8)), and 3) The number of tokens in each 
inhibitor place of the transition is less than the 
weight of the corresponding inhibitor arc ((9)). For 
any batch output place (resp. discrete output place), 
the firing of the transition generates a batch token 
with the size (resp. a number of discrete tokens with 
the number) given by the product of the batch firing 
index and the weight of the corresponding arc. 
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Fig. 1. Order processing example. 
 
To well understand the meaning of batch firing 
concept of BDSPN model, consider the net in Fig. 1. 
Customer orders with different sizes arrive and are 
recorded in batch place p2 where they wait for 
treatment by batch transition t1. To fill a given 
customer order with size b, we need a number of 
products from the stock represented by p1. In this 
example, a batch token with size b needs b discrete 
tokens since w(p1, t1) = 1.  For instance, to meet a 
customer order of size 2 (a batch token with b = 2 in 
p2), we need q×w(p1, t1) of products, where q is the 
batch firing index of t1 given by q = b/w(p2, t1) = b 
= 2. At the current µ-marking µ = (3, {4, 2}, 3)T, t1 
is enabled with q = 2. The batch firing of t1 with the 
index will remove the batch token from p2 and 
q×w(p1, t) = 2 discrete tokens from p1. A batch 
token with size q×w(t, p4) = 2 will be created in p3. 
 
2.3 Temporal behaviour.   
 
When both timed and immediate transitions are 
enabled at a µ-marking, it is assumed that only 
immediate transitions can be fired because timed 
transitions have the lowest priority. When immediate 
transitions with different priorities are enabled, only 
those with the highest priority can be fired. When 
several conflicting transitions with the same highest 

priority are enabled, each of them has the same 
probability to be fired. Each immediate transition is 
fired in zero time whereas each timed transition is 
fired after either a deterministic or an exponentially 
distributed firing delay. When some timed transitions 
are enabled at a µ-marking, the transition with the 
minimum firing delay will cause a change of the µ-
marking. Further, as in DSPNs, it is assumed that 
after the change of the µ-marking each timed 
transition newly enabled samples a remaining firing 
time from its firing delay distribution. Each timed 
transition which was enabled in the previous µ-
marking and is still enabled in the current marking 
keeps its remaining firing time (Ajmone Marsan et 
al. 1995). 
 
In addition, particular policies should be specified to 
choose a batch token in each batch input place to fire 
its output transition. In a BDSPN, batch tokens are 
distinguishable by their sizes and are viewed as 
different individuals. In each batch place, various 
batch tokens may exist and be taken as candidates for 
the firing of its output transitions. If multiple batch 
tokens with different sizes can fire a transition, one 
batch token has to be chosen for the firing of the 
transition. Possible selection policies include FIFO 
rule which respects the arrival order of batch tokens 
in each batch place, random rule, and token size-
based rule.  
 
 

3. MODELLING OF INVENTORY SYSTEMS 
 
In this section, we discuss how BDSPNs can be used 
to model inventory systems which are an important 
component of supply chains. Inventory systems with 
independent demand may use fixed or variable order 
quantity policies based on either continuous or 
periodic review of inventory position. The inventory 
position is defined as on-hand inventory plus 
outstanding orders minus backorders. Fixed order 
quantity policies place an order of fixed size 
whenever the inventory position of a stock falls to a 
pre-specified level, while variable order quantity 
policies place an order of variable size at regular 
intervals to raise the inventory position to a pre-
specified value. The most frequently used inventory 
policies include order-up-to-level policy, batch 
ordering policy (R, Q), and (s, S) policy. As an 
example, we consider an inventory system with 
continuous review (s, S) policy.  
 
For this system, when the inventory position IP drops 
below a given reorder point s, an order with quantity 
S – IP will be placed to raise the inventory position 
to a given order-to-level S. Figure 2 shows the 
BDSPN models of the inventory system: model (a) 
with continuous review and backorders, and model 
(b) with periodic review and no backorder. In model 
(a), place p1 represents on-hand (physical) inventory 
of the stock considered. Batch place p3 represents 
outstanding orders (the orders placed by the stock but 
their corresponding shipments not received yet). 
Discrete place p4 represents backorders (unfilled 
customer demands). Place p2 represents on-hand 
inventory of the stock plus its outstanding orders, 



     

that is, M(p2) = M(p1) + M(p3). The inventory 
position IP equals M(p1) + M(p3) − M(p4) = M(p2) 
− M(p4). Inventory replenishment decisions are made 
based on the position. In the model, customer 
demand is assumed to be a Poisson process, which is 
specified by transition t4 whose firing time is subject 
to an exponential distribution. Customer demand will 
be filled if there is sufficient on-hand inventory. 
Otherwise, the demand will be backordered. The 
fulfilment of customer demand will decrease on-hand 
inventory as well as the size of backorders. This is 
described by the arcs from places p1, p4 and p2 to 
transition t1. When the inventory position M(p2) 
− M(p4) drops below the reorder point s, i.e., M(p2) 
− M(p4) < s or equivalently M(p2) < s + M(p4), an 
order with quantity S – IP = S − M(p2) + M(p4) will 
be placed to the supplier. The placement of the order 
will increase the size of outstanding orders by this 
quantity. This is described by immediate transition t3, 
its associated arcs to places p2 and p3, and the 
weights of the arcs. When the M-marking of place 
p2, M(p2) is less than s + M(p4), transition t3 will be 
fired, which generates a batch token with size S − 
M(p2) + M(p4) in place p3 and S − M(p2) + M(p4) 
discrete tokens in place p2. If there is a batch token in 
place p3, a replenishment event represented by the 
firing of transition t2 will occur, which delivers the 
corresponding order to the stock. The firing delay of 
transition t2 represents the transportation delay of the 
order.  
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                                         (a) 

p2 
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p1 t2 t1 
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Periodic inventory  
review sub-net 

t5 

t6 

∏(t3)> ∏(t5) 

Period = D(t6) 
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Fig. 2. BDSPN models of (s, S) inventory systems. 
 
For modelling the system without backorder, the 
place p4 used for representing backorders in (a) is 
removed, exponential transition t4 and immediate 
transition t1 are merged to a new exponential 
transition t1, the term M(p4) in the weights of the arcs 
associated with transition t3 is removed accordingly. 
For modelling the periodic review feature of the 
system, in model (b), an additional subnet used for 
describing the feature is introduced and coupled with 
the net in (a) through a deterministic transition t3 
with Π(t3) > Π(t5). Our model can also describe 
inventory systems with order-up-to level policy and 
batch ordering policy. 

4. PERFORMANCE EVALUATION APPROACH 
 

One ultimate goal for the introduction of BDSPN 
model is to evaluate the performance of discrete 
event systems with batch behaviours. Similar to 
existing stochastic Petri nets, the main performance 
analysis technique for BDSPNs is based on the 
analysis of the stochastic marking process of the net 
{µ(t), t ≥ 0}. In the case of a bounded net, the 
resulting process may be a continuous-time Markov 
chain, a semi-Markov chain, a Markov regenerative 
process, or a generalized semi-Markov process 
depending on whether there are deterministic 
transitions and on whether a deterministic transition 
can be fired concurrently with other timed 
transitions. For the first three Markov chains or 
process, there are efficient analysis methods. Having 
known the marking process, some important 
performance indexes of the net such as average 
number of tokens in a place and average firing 
frequency of a transition can then obtained from the 
steady state distribution of the underlying Markov 
chain or process. The performance evaluation can be 
done following the steps: 1) The µ-reachability graph 
is generated from the BDSPN model, 2) The µ-
reachability graph is converted to its corresponding 
stochastic process, 3) The stochastic process is 
identified, analyzed and solved analytically or 
numerically to obtain its steady state probabilities, 4) 
The performance indexes of the system are computed 
using the solution (steady state probabilities) of the 
stochastic process. In the case of an unbounded net, 
simulation or approximation methods are required.  
 
BDSPN Performance Indexes. The performance of a 
BDSPN can be expressed in terms of performance 
indexes. These indexes can be computed using a 
unifying approach if they are defined over the 
reachable µ-marking set R(N, µ0) of the model and 
the mean value of each index can then be derived 
using the steady-state probabilities π of the model as 
explained in the following. 
 
The mean number of batch tokens in a give batch 
place is given by: 
 

( ) ( )
0: ( , )

( )
i

i i
i R N

µ p card p
µ µ

µ π
∈

= ⋅∑  (14) 

where card(µi(p)) is the cardinality of set µi(p). 
 

The mean number of batch tokens with the size equal 
to b in a given batch place is given by: 
 

( ) ( )
( )0: ( , )

( )
i i

i i
i R N µ p b

µ p card p
µ µ

µ π
∈ ∧ =

= ⋅∑  (15) 

 

The mean number of tokens in a given discrete place 
is given by: 
 

( )
0: ( , )

( )
i

i i
i R N

µ p p
µ µ

µ π
∈

= ⋅∑  (16) 

 

The mean total size of tokens in a given batch place 
is given by: 

( )
0: ( , ) ( )i i

i
i R N b p

M p b
µ µ µ

π
∈ ∈

 
= ⋅  

 
∑ ∑  (17) 

 



     

Let S(tj[q]) be the set of µ-markings at which batch 
transition tj is fired with  batch firing index q, the 
firing frequency of the transition with this index can 
be computed by: 
 

[ ]

[ ] [ ]
: ( )

( )
i j q

j q j q i
i S t

F t
µ

λ π
∈

= ∑  (18) 

where λj[q] is the firing rate of  tj with index q.  
 
 

5. PERFORMANCE EVALUATION OF (s, S) 
INVENTORY SYSTEM 

 
In the section, we model and analyze a continuous 
review (s, S) inventory system with Poisson and 
batch demand and exponential transportation time. 
The system is modelled using a BDSPN in Fig. 3. 
Compared to the model presented in Fig. 2(b), the 
batch place p4 connected to exponential transition t1, 
is used to model the source of batch customer orders. 
In the BDSPN, we assume that transition t1 
generates two different sizes of batch customer 
orders (with the batch sizes 1 and 2 respectively) 
which are specified by the µ-marking of p4 (i.e.; 
µ(p4) = {1, 2}). It is assumed that the reorder point 
and the order-up-to-level of the inventory system are 
taken as s = 4 and S = 6 respectively, and the initial 
µ-marking of the net is µ0 = (6, 6, ∅ , {1, 2}). 
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Fig. 3. BDSPN model of an (s, S) inventory system         
           with stochastic and batch demand  
 
The state space of the net is represented by its µ-
reachability graph shown in Fig. 4. In the graph, each 
directed edge is associated with a label representing 
the transition whose firing generates the successor µ-
marking. Each batch transition is marked by its 
corresponding batch firing index q. The µ-markings 
obtained can be classified into vanishing and 
tangible µ-markings. A vanishing µ-markings is one 
in which at least one immediate transition is enabled, 
and a tangible µ-marking is one in which no 
immediate transition is enabled. In the µ-reachability 
graph, the vanishing µ-markings µi (i = 0 to 9) are 
represented by rectangles and two tangible µ-
markings µ and µ’ are represented by dotted 
rectangles. After eliminating the vanishing µ-
markings by merging them with their successor 
tangible µ-markings and converting the reduced µ-
reachability graph to its corresponding stochastic 
process, we get a Continuous Timed Markov Chain 
(CTMC) represented in Fig. 5. Assuming that the 
firing delays of batch transitions t1 and t2 (the 

demand rate and the inventory replenishment rate) 
are exponentially distributed with rates λ1[q]= λ1 and 
λ2[q]= λ2 respectively for any feasible batch firing 
index q, the infinitesimal generator matrix (transition 
rate matrix) denoted by A is given in Fig. 6. 
By solving the linear system π.A = 0, and Σi πi = 1, the 
steady-state probabilities π can be explicitly obtained 
as functions of parameters λ1 and λ2 given in Table 1. 
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Fig.4. The µ-marking reachability graph of the BDSPN. 
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Fig. 5. The corresponding CTMC of the BDSPN. 
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Fig. 6. The transition rate matrix A of the CTMC. 



     

Table 1. Steady-state probabilities π 
 

π0 = (λ2)2[ 37.(λ1)3.λ2+49(λ1)2.(λ2)2+24(λ2)3.λ1+8(λ1)4+4(λ2)4] 
÷[164.(λ1)5.λ2+326.(λ1)4.(λ2)2+361.(λ1)3.(λ2)3+32.(λ1)6+226.(λ2)4.(λ1)2+72.(λ2)5.λ1+9.(λ2)6] 

 
π1 = 2(λ2)2[ 8(λ2)3.λ1+20(λ1)3.(λ2)+21(λ2)2.(λ1)2+4(λ1)4+(λ2)4] 
÷[164.(λ1)5.λ2+326.(λ1)4.(λ2)2+361.(λ1)3.(λ2)3+32.(λ1)6+226.(λ2)4.(λ1)2+72.(λ2)5.λ1+9.(λ2)6] 

 
π2 = (2λ1+λ2).(λ1+λ2).(λ2)2 [ 3(λ2)2+20(λ1)2+15λ1λ2] 
÷[164.(λ1)5.λ2+326.(λ1)4.(λ2)2+361.(λ1)3.(λ2)3+32.(λ1)6+226.(λ2)4.(λ1)2+72.(λ2)5.λ1+9.(λ2)6] 

 
π3 = λ1λ2.[ 30(λ2)3.λ1+54(λ1)3.(λ2)+63(λ2)2.(λ1)2+5(λ2)4+16(λ1)4] ÷ 

÷[164.(λ1)5.λ2+326.(λ1)4.(λ2)2+361.(λ1)3.(λ2)3+32.(λ1)6+226.(λ2)4.(λ1)2+72.(λ2)5.λ1+9.(λ2)6] 
 

π4 = (λ1+λ2).(λ2)2.λ1 [ 3(λ2)2+20(λ1)2+15λ1λ2] ÷ 
÷[164.(λ1)5.λ2+326.(λ1)4.(λ2)2+361.(λ1)3.(λ2)3+32.(λ1)6+226.(λ2)4.(λ1)2+72.(λ2)5.λ1+9.(λ2)6] 

 
π5 = λ2.(λ1)2[5(λ2)3+23λ2(λ1)2+20(λ2)2.(λ1)+8(λ1)3] ÷ 

÷[164.(λ1)5.λ2+326.(λ1)4.(λ2)2+361.(λ1)3.(λ2)3+32.(λ1)6+226.(λ2)4.(λ1)2+72.(λ2)5.λ1+9.(λ2)6] 
 

π6 = (λ2)2.(λ1)2 [ 3(λ2)2+20(λ1)2+15λ1λ2] ÷ 
÷[164.(λ1)5.λ2+326.(λ1)4.(λ2)2+361.(λ1)3.(λ2)3+32.(λ1)6+226.(λ2)4.(λ1)2+72.(λ2)5.λ1+9.(λ2)6] 

 
π7 = [24(λ1)3+53(λ2)(λ1)2+ 30(λ2)2(λ1)+5(λ2)3] .(λ1)2 λ2 ÷ 

÷[164.(λ1)5.λ2+326.(λ1)4.(λ2)2+361.(λ1)3.(λ2)3+32.(λ1)6+226.(λ2)4.(λ1)2+72.(λ2)5.λ1+9.(λ2)6] 
 

π8 = (λ1)2 λ2 [3(λ2)2+20(λ1)2+15λ2λ1].(2λ1+λ2) ÷ 
÷[164.(λ1)5.λ2+326.(λ1)4.(λ2)2+361.(λ1)3.(λ2)3+32.(λ1)6+226.(λ2)4.(λ1)2+72.(λ2)5.λ1+9.(λ2)6] 

 
π9 = 2(λ1)3.[ 38λ2(λ1)2+25(λ2)2.(λ1)+5(λ2)3+16(λ1)3] ÷ 

÷[164.(λ1)5.λ2+326.(λ1)4.(λ2)2+361.(λ1)3.(λ2)3+32.(λ1)6+226.(λ2)4.(λ1)2+72.(λ2)5.λ1+9.(λ2)6] 
 

 
With the steady state probabilities, we can easily 
calculate some important performance indexes of the 
system, such as the average inventory level and the 
stockout rate of the system. The average inventory 
level of the system (the mean number of tokens in 
discrete place p1) can be obtained as:  
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The stock-out rate of the system (the probability of 
the emptiness of place p1) is given by: 
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Given λ1 = 1, the average inventory level and the 
stock-out rate as functions of λ2 are depicted in Fig. 
7 and Fig. 8, respectively. 
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Fig. 7. Average inventory level of the stock. 
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Fig. 8. Stock-out rate of the stock. 

For other parameter values s and S, we can similarly 
calculate the performance indexes of the inventory 
system. The parameters can then be optimized by 
applying a local-search based meta-heuristic.  
  
 

6. CONCLUSION 
 

In this paper, a new stochastic Petri net model called 
batch deterministic and stochastic Petri nets 
(BDSPNs) is presented and its potential to the 
modelling and performance evaluation of inventory 
systems is illustrated. The most important advantages 
of the model are that it is capable of describing the 
synchronization of discrete and batch token flows 
appeared in batch discrete event systems and it keeps 
the simplicity of discrete Petri nets allowing us to 
extend existing methods for stochastic Petri nets to 
analyze it. We believe that the new model exhibits 
some important properties and is worth being further 
investigated in both theoretical and application 
aspects. 
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