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Abstract: This paper presents a new approach to the modeling and identification of 
continuous nonlinear dynamic systems in terms of linear local models. In this 
approach, each local model is associated with a member of the linearization family of 
the original nonlinear system. Based on this family, a nonlinear model can be 
constructed, constituting an approximation of the nonlinear system around the entire 
equilibrium manifold. As a result, empirical model interpolation procedures are not 
necessary. It is also shown how this method can be used for plant identification. A 
numerical example demonstrates the efficiency of the method.  Copyright © 2005 
IFAC 
�
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1. INTRODUCTION 

 
The availability of nonlinear dynamic models has 
been recognized in the literature as one of the main 
obstacles, if not the most important, for the 
application of nonlinear control strategies. First-
principles or “white-box” models are often too 
expensive to be obtained in practice and frequently 
too complex to be useful for control. Another 
possibility is the determination of the dynamic model 
directly from plant data in terms of “black-box” 
structures, what results in a model that has no direct 
physical interpretation and that may exhibit poor 
extrapolation capabilities.  
 
A hybrid solution to this problem, which can be 
termed “grey-box” modeling, is the use of several 
“local models”, understood as approximations of the 
original system in a limited sub-region of the 
operating domain, to construct a nonlinear model. 
The underlying principle is that the system behavior 
is “simpler” locally than globally and as a result local 

models can be identified more easily. Examples of 
this methodology are the local linear models tree 
(Nelles, 1997), the identification through the 
decomposition into operating regimes (Johansen and 
Murray-Smith, 1997) and Takagi-Sugeno fuzzy 
systems (Takagi and Sugeno, 1985). In order to 
provide a global model of the process, the local 
models must be combined in some manner. In the 
literature, this is usually done by means of a 
nonlinear combination of the local models using e.g. 
weighting functions that quantify the influence of a 
specific local model on the global one. These 
weighting functions have a different interpretation in 
each of the techniques above, e.g. the scheduling 
between operation regimes, the validity function of 
each model, the probability that a given local model 
corresponds to the “true” model at a given instant, 
the fuzzy inference rule, etc. Although this kind of 
structure exhibits a certain type of "uniform 
approximation property" (Johansen and Foss, 1993; 
Johansen et al., 2000), the resulting global model, 
when analyzed locally, may keep very little similarity 



     

with the respective local model. As a result, the 
appeal of this technique is considerably reduced 
(Shorten et al., 1999). 
 
This paper is organized as follows: Section 2 presents 
the theoretical basis for the development of a 
nonlinear system approximation by means of local 
linearizations, and Section 3 gives an alternative 
interpretation of this model in terms of linearizations 
around submanifolds. Section 4 discusses how these 
ideas can be used for system identification. The 
method is then applied in Section 5 to the 
approximation and identification of a nonlinear 
system in a numerical example. Concluding remarks 
can be found in Section 6. 
 
 

2. LINEARIZATION FAMILIES AND 
PARAMETERIZED LINEAR SYSTEMS 

 
Consider a continuous SISO nonlinear dynamic 
system of the form 
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where r: X × U→ n
�  is at least once continuously 

differentiable, X ⊆ n
� , U ⊆ � , and h: X → �  is at 

least once continuously differentiable. The output 
equation will be frequently omitted for shortness in 
the sequel. Suppose without loss of generality that (1) 
possesses a constant operating point at the origin 
(0,0) ∈ X × U, that is, r(0,0) = 0 and h(0,0) = 0 (this 
can be always achieved by means of a suitable 
translation of the origin). The “family” of constant 
equilibrium points corresponding to nonzero constant 
inputs is defined as the set 
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The interest is to characterize the set of constant 
operating points Ξ in terms of the external process 
variable u. More precisely, we want to state the 
conditions under which the set of equilibrium points 
can be parameterized by the input. 
 
Proposition 1 (Wang and Rugh, 1987): Suppose the 
nonlinear system (1) satisfies 
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Then, in an open neighborhood N of 0 ∈ � , there is 

a continuously differentiable function ΩΩΩΩ: � � n
� , 

with ΩΩΩΩ(0) = 0, such that r(ΩΩΩΩ(u), u) = 0, u ∈ N. In this 
case, we also write Ψ(u) = h(ΩΩΩΩ(u), u). 
 
Proof: Application of the implicit function theorem 
to r(x,u) = 0.              � 

The functions ΩΩΩΩ and Ψ above represent the maps that 
give, for each constant input us (at least sufficiently 
close to the origin), the corresponding steady state xs 
and stationary output ys. 
 
2.1 Parameterized Linear Systems 
 
Having in mind the parameterization of the family of 
equilibrium points by means of the input u, it is 
natural to use them to parameterize also the “family 
of linearizations” of (1). In the case of the state 
equation, we have 
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where the coefficient matrices are continuous 
functions of us. The meaning of this expression is 
that, for each constant input us, there will be an 
associated linearization (4). Conversely, given a 
parameterized linear state-equation of the form 

 
        ( ) ( )( ) ( ) ( )s s s su u u u u= − + −x A x
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then (5) is said to constitute a linearization family if 
there is a nonlinear system (1) such that, in a 
neighbourhood of 0 ∈� , r(ΩΩΩΩ(u),u) = 0. 
 
Proposition 2 (Wang and Rugh, 1987): Suppose the 
parameterized linear state equation (5) is such that 
A( ⋅ ), B( ⋅ ) are continuous, and ΩΩΩΩ( ⋅ ) is 
continuously differentiable. Then (5) constitutes a 
linearization family if and only if 
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The sufficiency part of the proposition above can be 
proven by constructing a nonlinear system of the 
form (1) which yields a family of linearizations (4). 
In the case of input parameterization, this nonlinear, 
state-affine system is of the form 

 
                 ( )( , ) ( ) ( )u u u= −r x A x

� .               (7) 

 

 This representation is of course not unique; it has 
to be interpreted as a nonlinear system that possesses 
the same family of equilibrium points (2) and the 
same linearization family (4) as the nonlinear system. 
This characteristic will be used in the sequel for 
constructing an approximation to (1) by means of a 
finite number of linear local models that are 
considered as members of its linearization family. 
 
 

3. LINEARIZATION ON THE EQUILIBRIUM 
MANIFOLD 

 
The system (7) can be considered as a linearization of 
(1) not around a single equilibrium point (xs,us) but 
around the entire equilibrium submanifold. Consider 
the Taylor linearization (or linear tangential model) 



     

of a scalar-valued nonlinear function f(z,v): Z × V  

∈ z
�  × v

�  → � : 
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where (z0,v0) represents a point on Z × V . Suppose 
now that besides the value of f and its derivatives at a 
single point, one knows their values on an entire set 
of points of the form Φ: {(z,v,w) ∈ Z × V × � : 
(z,φφφφ(z),f(z,φ(z)))}, with φφφφ(z) a smooth function on Z. 
The set determined by (z,φφφφ(z)) represents a z-
dimensional submanifold on Z × V, parameterized by 
z. It is then natural to use this information to 
construct a Taylor-like approximation around the 
entire submanifold, which is given by: 
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Note that z enters in (9) solely by means of the 
(known) function φφφφ(z); that is, z degrees of freedom 
are eliminated in the approximation (9). The limiting 
case when z spans the entire domain of the function f 
(that is, V is empty) corresponds to the situation 
when f is perfectly known. Furthermore, it can be 
easily shown that the linearization of (9) at a constant 
point (z0,v0) agrees with (8). 
 
In the case of a system given by (7), the submanifold 
is defined as the set {u,ΩΩΩΩ(u),r i(ΩΩΩΩ(u),u)}, i = 1,…, n, 
where r i(ΩΩΩΩ(u),u) = 0. In this sense, (7) can be 
considered as a linearization around the equilibrium 
manifold (LEM), and it will be called 
correspondingly a LEM system. 
 
 
4. CONSTRUCTING AN APPROXIMATION OF 

THE LEM SYSTEM 
 

The interest will be focused now on the situation in 
which one wants to construct an approximation of the 
nonlinear system (1). As stated at the beginning, a 
possible way of doing this is to use linear local 
models, which are theoretically easier to identify, to 
construct a nonlinear model. If these local models 
can be associated with the family of linearizations of 
the original nonlinear system (4), then it is possible 
to construct the LEM model (7), which is a nonlinear 
approximation of the original system around the 
equilibrium manifold. Obviously, the adequacy of 
this approximation will depend on the unknown 
nonlinear system itself; nonetheless, this method has 
some interesting features: 
 
• only local identification around the equilibrium 
manifold is necessary, what is less expensive than 
global experiments; 

• it circumvents the problem of obtaining local 
models away from the equilibrium manifold (Shorten 
et. al, 1999); 
• there is no need for empirical interpolation 
procedures, which are associated with a series of 
problems (Johansen and Murray-Smith, 1997); 
• the resulting LEM system can be analyzed on the 
basis of the local models in a straightforward manner, 
and control strategies such as pseudo- or extended 
linearization can be applied directly (Reboulet and 
Champetier, 1984). 
 
The focus on input parameterization is due to the fact 
that the identification experiments are carried out by 
exciting the plant with a designed input signal. In this 
sense, if one assumes that the local models can be 
identified by perturbing the plant around isolated 
equilibrium points, it is natural to use the input for 
parameterizing the linearization family. 
 
The exact LEM system involves the infinite family of 
linearizations and of the equilibrium points of (1), 
described by the matrix functions A(u) and ΩΩΩΩ(u). In 
the identification context, just a finite (and probably 
small) number of the members of these families are 
known, but one can still use approximation or 
interpolation methods in order to “reconstruct” these 
functions from the known members. This plays an 
equivalent role to the weighting functions of the 
original technique, although in this case the objective 
of the interpolation is clear. Moreover, there is much 
more flexibility in choosing the interpolation method 
and the problems due to function normalization 
disappear. The resulting model will be called in this 
case the approximated LEM system 
 
Another difficulty is that it is not possible to 
associate directly the local linear models with the 
linearizations of any specific form (realization) of the 
nonlinear system, since they are obtained up to a 
similarity transformation. However, given coefficient 
matrices A(u) and B(u), a family of equilibrium 
points ΩΩΩΩ(u) can be constructed, or, equivalently, (5) 
can be made a linearization family, by considering 
equation (6). Moreover, following a reasoning 
similar to that of Reboulet and Champetier (1984), 
any similarity transformation between two linear 
systems can be interpreted as the gradient of a 
nonlinear coordinate transformation on the 
equilibrium manifold, provided some mild conditions 
hold. Obviously, more suitable representations can be 
obtained if it is possible to associate (5) to a specific 
nonlinear representation, for example a canonical 
form. In this work, it will be assumed that (1) can be 
written in the following form (Byrnes-Isidori normal 
form): 
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where r is the relative degree, and y = s1. The 
linearization of (10) around (0,0) will be then of the 
form 
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The vectors p and q can be directly associated with 
the parameters of the transfer function of (11). 
 
 

5. NUMERICAL EXAMPLE: CSTR REACTOR 
WITH REVERSIBLE REACTION 

 
The ideas presented in the previous sections will be 
applied to the identification of a nonlinear model of a 
CSTR carrying out the following reaction scheme: 
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This system can be modeled as 
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where the states x1, x2 and x3 are the concentrations of 
the components A, B and C, respectively, k1 = 2, 
k2 = 5, k3 = 3 and k4 = 1 are the kinetic parameters, 
and x2,in = 1 is the inlet concentration of component B 
(units are disregarded in this example). The 
manipulated input u is the inverse of the residence 
time in the reactor (total volumetric inflow divided 
by reactor volume). The controlled output y is the 
concentration of component A. This system has a 
well defined relative degree of 1 for all x with x1 ≠ 0.  
 
The approximated LEM is constructed by means of 4 
linear local models corresponding to the operating 
points us,1 = 1 (ys,1 = 0.193), us,2 = 2.5 (ys,2 = 0.236), 
us,3 = 5 (ys,3 = 0.226), us,4 = 7.5 (ys,4 = 0.206). No 
special methodology was employed to select the 
number or the location of these points; they were 
simply distributed over the range of the manipulated 
input (0.5 ≤ u ≤ 10) around the maximum of ys. 
 
5.1 Reconstructing the LEM system with local 

models from linearizations of the nonlinear 
model in original coordinates 

 
 The model (12) was linearized at the four 
operating points (OP) given above. Table 1 
summarizes the parameters of these linear local 
models. Among the remarkable features concerning 
the variation of the dynamic character along the 
equilibrium manifold, the most important is the sign 
change of z1. The local models in state-space form 
{ Ai, Bi, ci} , together with the equilibrium points xs,i, 

i = 1,…4, obtained by solving (12) for each us,i, can 
be used to construct an approximation to the LEM 
system. 
 

Table 1 Transfer function parameters of the local 
models at the four operating points 

 
OP 1 2 3 4 

Gain -0.193 -0.236 -0.226 -0.206 
Pole 1 (p1) -8.23 -11.49 -15.51 -18.96 
Pole 2 (p2) -1.70 
Pole 3 (p3) -1.33 

(-3.0 ± 
0.14i) 

(-5.5 ± 
0.18i) 

(-8.0 ± 
0.17i) 

Zero 1 (z1) +5.54 -0.842 -3.02 -6.05 
Zero 2 (z2) -1.25 -2.82 -5.31 -7.79 

 
Each of the elements of the matrices Ai and the 
vectors xs,i were interpolated in order to construct 
approximations to the functions A(u) and ΩΩΩΩ(u) in (7). 
For the A matrix, smoothing unidimensional spline 
functions were constructed with the Matlab function 
spaps (tolerance of 10-5). The interpolation of the 
steady-state function can be improved by using the 
derivatives given by (6), that is, by using Hermite 
interpolation (Matlab function spapi). 
 
The response of the approximated LEM system with 
the input signal depicted in Fig. 1 is compared to the 
corresponding response of the nonlinear model in 
Fig. 2. The output of the exact LEM system (A(u) 
and ΩΩΩΩ(u) are perfectly known from the nonlinear 
model) is also plotted for reference, as well as the 
response of the best linear model of Table 1 in this 
case. Observe that the curves corresponding to the 
exact and approximated LEM systems are practically 
indistinguishable and very close to the response of 
the nonlinear system. 
 
5.2 Reconstructing the LEM system with local 

models in Byrnes-Isidori Normal Form 
 
In this section, we demonstrate that different state-
space bases will lead to LEM systems with different 
approximation characteristics. Furthermore, this 
situation is closer to practice, where one does not 
have a basis for the state-space. The four local 
models {Ai, Bi, ci} were transformed by means of a 
similarity transformation into the linear Byrnes-
Isidori normal form discussed in Section 4, 
producing a set of local models {Ai

(n), Bi
(n), ci

(n)}. 
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Fig. 1. Test input signal 
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Fig. 2. Responses of the nonlinear, linearized at the third OP, exact and approximated LEM systems in both 

original and Byrnes-Isidori normal coordinates to the test input signal in Fig. 1. 
 

 

Element-wise interpolation of the matrices Ai
(n), 

i = 1,…, 4, was performed as in 5.1. The steady-
states of this particular realization are not known, 
since the local models were obtained by a point-wise 
linear transformation (assumed to be the gradient of a 
nonlinear coordinate change). In this case, it is 
necessary to use equation (6) to interpolate first the 
derivatives of ΩΩΩΩ(n)(u), given by –[Ai

(n)]-1Bi
(n). The 

function ΩΩΩΩ(n) itself can be obtained by integration of 
this spline (Matlab function fnint); the integration 

constant was chosen in order that the origin in 3
�  

was the steady-state corresponding to the constant 
input us,1 = 1.  
 

The response of the approximated LEM system to the 
input signal depicted in Fig. 1 is shown in Fig. 2. 
Although the local models are related by means of a 
similarity transformation (that is, they represent 
linear models with the same input/output behavior), 
the LEM systems in both forms are not equivalent. 
Other tests showed that this fact is not related to the 
poorer interpolation of A(n)(u) and ΩΩΩΩ(n)(u) in the new 
basis, but to the fact that different realizations will be 
more or less nonlinear around Ξ. Consequently, the 
LEM systems constructed by means of linearization 
families corresponding to different state-space bases 
of the nonlinear system will show different 
approximation capabilities with respect to it. 
 
 
5.3 Reconstructing the LEM system from 

identification experiments 
 
This case is certainly of most interest for practical 
applications. It is crucial for the success of the 
method that the identified local models are good 
approximations of the linearizations of (1). The most 

evident heuristics is perhaps to use identification 
signals with amplitude as small as possible, in order 
to avoid that the nonlinear effects become strong. 
From one point of view, this is a quite “plant-
friendly” condition, but it on the other hand imposes 
important practical requirements (sufficient precision 
in measuring and setting inputs and outputs, for 
example). 
 
In order to illustrate this point, experiments were 
made with the nonlinear model (12). For each of the 
operation points, pseudo-random binary 
identification signals (PRBS) were generated by 
means of the Matlab function idinput with 
determined length (in terms of number of samples) 
and amplitude (in ∆ percent of us,i). The period 
(sampling time) σ of the signal was determined 
previously as a fraction of t63, where t63 is the time 
needed for the step response of the nonlinear model 
to reach 63% of its steady-state value. 
 
The routine subid of the Subspace Identification 
Toolbox (van Overschee and de Moor, 1996) was 
used for identifying the linear local models with the 
basis of the responses of the nonlinear model with 
respect to the PRBS. A similar sequence was used for 
validation purposes. Table 2 summarizes the results 
obtained for the best identification setting in terms of 
∆ and σ in each case; the term “best” refers to 
resulting parameter values closest to those in Table 1. 
Other test signals (for example, Gaussian white 
noise) did not perform better. The signal length 
turned out to be not critical and was taken as 100 
samples for all operating points. The most important 
parameters were the input amplitude ∆ and the period 
of the signal σ. Table 3 shows the optimal parameters 
corresponding to Table 2. 



     

Table 2 Identified parameters at each operating point  
 

OP 1 2 3 4 
Gain -0.193 -0.235 -0.226 -0.206 

Pole 1 (p1) -8.19 -11.38 -15.58 -19.53 
Pole 2 (p2) -1.72 
Pole 3 (p3) -1.15 

(-3.1 ± 
0.6i) 

(-5.9 ± 
1.3i) 

(-10.1 
± 2.9i) 

Zero 1 (z1) +5.54 -0.809 -3.28 -7.60 
Zero 2 (z2) -1.08 -2.84 -5.96 -11.04 

 
Table 3 Characteristics of the PRBS used in Table 2 

 
OP 1 2 3 4 

∆ (%)*  3 10 3 3 
σ 0.101 0.047 0.029 0.019 

* 3% was considered a lower bound for practical reasons. 
 
The differences in Table 3 can be interpreted by the 
fact that the system shows different characteristics at 
the different OP’s. The first OP lies in a region where 
the dynamics vary more pronouncedly and p3 and z2 
are particularly close. In this sense, the amplitude has 
to be small enough to capture these features. The 
second OP has the characteristic of possessing the 
smallest stationary gain; the input must then have 
sufficient amplitude to excite the plant. Another 
critical aspect is related to the selection of the order 
of the plant. It was imposed here to be 3 so that the 
results can be compared with Table 1; moreover, it is 
necessary that the order is the same for all local 
models. The actual order is not obvious neither from 
the singular value test of subid nor from the analysis 
of the residuals of models of different orders. An 
indication of excessive order was often the 
generation of elements as unstable poles, complex 
conjugate zeros and also “nearly non-minimal” 
realizations, which are unexpected. The fastest pole 
(p1) was correctly identified in all cases. 
 
The identified state-space local models were then 
transformed into the linear Byrnes-Isidori normal 
form (11) and used for the construction of the LEM 
system as in Section 5.2. The response of this system 
with respect to the input signal shown in Fig. 1 can 
be seen in Fig. 3. The response of the LEM system 
developed in Section 5.2 is also shown for 
comparison. The steady-state outputs ys,i, i = 1,…, 4, 
were assumed to be perfectly known for the 
construction of the LEM model. 
 

6. CONCLUSION 
 

This paper presented a new approach to the 
modelling and identification of nonlinear dynamic 
systems in terms of linear local models: the 
linearization on the equilibrium manifold (LEM). 
The LEM model is constructed on the basis of the 
local models, which can be obtained for example by 
identification, and approximates the original 
nonlinear system around the equilibrium manifold. A 
numerical example showed that the LEM model can 
constitute a good approximation model for the type 
of systems considered. 
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Fig. 3. Responses of the nonlinear, linearized and
 identified LEM systems (both in Byrnes-Isidori 
 normal form) to the test input signal in Fig. 1. 
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