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Abstract: This article presents a real-time H2 optimal control platform which guarantees the 
stability of a system and also is capable of controlling some complex nonlinear processes 
using a multiple model based concept. The idea is based on developing local linear models 
for the whole operating range of the process being controlled in Matlab/Simulink/Real-
Time-Workshop environment using Visual C++ and Watcom compilers and a DAQ 
interface. Two real nonlinear plants are approximated by sets of local models where each 
model is valid for a small operating region and connected together to form a global 
continuous model using proper Gaussian validity and interpolation functions. Stability of 
the global system based on the local stability of the sub-systems is also addressed and 
results are presented.  Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
Almost every linear or nonlinear control strategy 
centers around a process model, with the real 
processes being usually nonlinear functions. The 
accuracy of the model could directly influence the 
performance of the final controller. Linear models are 
often easy to develop and lead to relative simplicity 
in the design of controllers. Also the stability with 
linear models can be derived easier than with 
nonlinear ones.  There has always been a compromise 
between the simplicity of the model and its accuracy. 
This is to say that a very accurate model but highly 
nonlinear could also lead to a dramatic increase in the 
complexity of the controller and therefore not very 
appealing. 
 
Multiple modeling based control has been a research 
tool in various applications. One conventional 
method that guarantees the stability of a global 

system and includes some local sub-systems or 
controllers is addressed by Fernandez-Anaya and 
Escandon-Alcazar (1997) and is called Simultaneous 
Stabilization.  Johansen and Foss (1995, 1997) 
present an empirical modeling of a heat transfer 
process using local models and interpolation. 
Gregorcic and Lightbody (2000) compared pole-
placement self-tuning control with the multiple 
model approach for the control of a highly nonlinear 
process. A nonlinear Continuously Stirred Tank 
Reactor (CSTR) process is used to highlight some of 
the difficulties associated with self-tuning control. 
Doya et al (2002) introduced a modular 
reinforcement learning architecture for non-linear, 
non-stationary control tasks which is called Multiple 
Model-based Reinforcement Learning (MMRL). 
There are two other methods used for complex 
system with several operation behaviors. The first 
method is introduced by Aarhus (1994) called Partial 
Least Squares regression (PLS) model that usually is 
used for nonlinear empirical modeling. The second 



one is addressed by Angelis (2001) named Polytopic 
Linear Models (PLM) which is used for modeling, 
control and identification. One of the latest 
applications of the multiple modeling approach in 
radar and communication is introduced by Bar-
Shalom and Blair (2000) which is called Interacting 
Multiple Model (IMM) estimator and provide 
superior tracking performance compared to maneuver 
detection schemes. 
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 Each of the above methods has some advantages and 
special complexity. Besides, none of the methods has 
been applied to Real-Time applications. In this 
article, it is tried not only to develop the optimal 
multiple model based method in a simple way, but 
also to present its real-time implementation. This 
paper is organized as follows. In Section 2 of this 
paper, the real time processes are introduced and in 
Section 3 the multiple model based approach is 
presented. Section 4 reviews the optimal control 
method for sample data systems. Stability issue is 
addressed in Section 5. Experimental results are 
provided is Section 6, and concluding remarks are 
considered in Section 7. 
 

2. REAL-TIME PLATFORM FOR THE REAL 
PROCESSES 

 
The systems used in this article are an experimental 
Heating plant and a Twin Rotor MIMO System 
(TRMS).  
The Heating plant is the main case study and 
composes of an “air tube” which contains a “heating 
element” as input, “temperature sensor” as output and 
an “air damper” as a disturbance. The aim is to 
control the output temperature of this system which 
has a special nonlinear behavior. 
 
Consider the experimental Heating plant depicted in 
Figure 1. The practical process consists of a tube, an 
air damper, a heating element and a temperature 
measuring device. Air enters the tube and is warmed 
up by the heating element. The temperature of the air 
is measured by the a sensor and is sent to the 
controllers to make a proper signal. The variables are: 
• Input voltage u(t) which is applied to the heater 
and changes by the fire angle of a BT-137 Triac. 
• Fan driver v(t) that is considered as a disturbance 
and changes by the potentiometer which controls the 
fan driver containing two BD-140 and 2N-3055 
Transistors. 
• Output temperature y(t) which is measured by an 
LM-35 Transistor and amplified by an OP-07 Op-
Amp. The measured output sensitivity is 1V/20ºC. 
• For implementation of identification and control 
algorithms, the thermal process is connected to a 
computer via a PCL-818HG DAQ-card of Advantech 
(1994). The platform to implement the control and 
identification procedures is developed within 
Matlab/Simulink/Real-Time-Workshop. This process 
was built in Shiraz University. 
The TRMS is a laboratory scale set-up designed for 
control experiments by Feedback Company.  

 
 
 
 
 
 
 
 
 
 
 

 

 
Fig. 1: The  thermal-process and the Twin Rotor 

MIMO System (TRMS). 
 

In certain aspects this plant’s behavior resembles that 
of a helicopter (see Feedback, 2004). From the 
modeling and control point of view it exemplifies a 
high order non-linear system with significant cross 
couplings (Figure 1). Iit consists of a beam pivoted 
on its base in such a way that it can rotate freely both 
in horizontal and vertical planes. At both ends of the 
beam there are rotors (the main and tail rotors) driven 
by DC motors. A counterbalance arm with a weight 
at its end is fixed to the beam at the pivot. 
 
The states of the beam are described by four process 
variables: horizontal and vertical angles measured by 
position sensors fitted at the pivot, and two 
corresponding angular velocities. The control outputs 
are the voltages applied to the DC motors. A change 
in the voltage value results in a change of the rotation 
speed of the propeller which results in a change of 
the corresponding position of the beam. The plant can 
be fixed as two have a one DOF or two DOF. This 
plant is connected to a computer via a PCL-812PG 
DAQ-card of Advantech. In the TRMS for the one 
DOF study, the input is the voltage applied to the 
main motor (Uv) and output is the vertical position of 
the TRMS beam (pitch position, y=αv). This behavior 
is quite nonlinear and oscillatory (see   Feedback, 
2004, for detail). 
 
3. NONLINEAR  MODELING USING MULTIPLE 

MODELS 
Consider a general stable nonlinear system. The 
system operating range under all possible operating 



conditions are divided into several regimes 
(Johansen,1994) where in each regime the system can 
be represented by a linear model. The system’s full 
operating range is completely covered by these 
regimes. The operating regimes could depend on 
states, inputs and outputs of the process.  
One linear model is associated with each of the 
regimes and describes the system behavior in that 
regime. At some operating regions there may be 
overlaps between the regimes where several linear 
models are valid. In these cases a single model 
cannot be used to represent the system. In order to 
solve this problem a validity (weighting) function is 
associated with each of the local linear models and 
then the nonlinear process is approximated with a 
weighted combination of the local linear models 
using validity functions. 
Assume that m linear ARMAX models have been 
identified to explain the plant behavior at different 
operating regimes and that all information about the 
plant is contained in the local models. Each of the 
local models has the following form: 
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The above equation shows the pth local model, where 
yp is the output, u is the input, v is the disturbance, 
and ,  and  are the model coefficients. In 
general the global system is represented as: 
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μps are relative validity functions with the following 
characteristics:  
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where z(t) is the operating point. The relative validity 
of each of the local models at a particular operating 
point is indicated by μp. If at a given operating point 
the local model j is accurate then μj = 1 and 

jpp ≠∀= ,0μ . Also under some operating 
conditions there may be several local models which 
are valid.  The local ARMAX model structures are 
combined into an NARMAX model structure. The 
input, disturbance, and output deviations are thus 
decomposed into separate regimes for both plants as 
shown in Table 1. 
 

Table 1: The local regimes of the plants.
Regime Heating Plant TRMS 

1 ] ,1,0[)( ∈tu ]4,3[)( ∈tv  ]2.,4.0[)( −−∈ty  

2 ]1,0[)( ∈tu , ]5,4[)( ∈tv  ]0,2.0[)( −∈ty  

3 ]2,1[)( ∈tu , ]4,3[)( ∈tv  ]2.0,0[)( ∈ty  

4 ] ,2,1[)( ∈tu ]5,4[)( ∈tv  ]4.0,2.0[)( ∈ty  

5 - ]6.0,4.0[)( ∈ty  
6 - ]8.0,6.0[)( ∈ty  

 
To combine the local ARMAX model structures into 
an NARMAX model in a smooth manner as 
mentioned before, one needs to define a validity 

function which shows the relative validation of each 
local model. The validity functions (ρ) are considered 
two dimensional Gaussian functions and the 
interpolation functions (μ) are also given below 
(assuming ))(),(()( tvtutz = , for instance): 
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The output of the model can be found by combining 
the outputs of local models with interpolating 
functions which depend on the value of input and 
disturbance for the Heating plant and output for the 
TRMS. This can be done by an off-line algorithm.  
One important task is to choose the best variance for 
the validity functions such that minimum NRMSE 
can be achieved. The performance of multiple model 
approach can be seen in Figure 3 for both real 
systems. In Figure 3(b) depicts the true data versus 
their approximations to clearly see the approximation 
quality, since the TRMS has a very oscillatory 
behavior. A single ARMAX (i.e. for the whole 
regions) model approximation quality is also shown 
for a better comparison. 
 

 
 
 
 
 
 
 
 

(a) 

(b) 

__ TRMS 
o    MM 
●    Single ARMAX 

TRMS 

Fig. 3: Multiple model (MM) approximation 
capability. (a) Heating plant (True data and MM), 
(b) TRMS plant (True data, MM, and a single 
ARMAX for the whole region). Here the 
discrepancy from the line shows errors. y=αv (in 
radians) and input is Uv (in volts). 

 
4. H2 OPTIMAL SAMPLED DATA CONTROL 

 
In this section the procedure for designing the 
optimal control system is presented. First an optimal 
H2 controller is designed (see Chen and Francis, 1995) 



for each of the local models and then these 
controllers are combined together to obtain the global 
control law. Each of the optimal controllers produces 
a control law that minimizes a cost function and 
provides a local stable closed loop system. Assume 
all of the local models are completely stabilizable and 
detectable and all of the states are available. Consider 
the block diagram shown in Figure 4.  
 
 
 
 
 
Fig. 4: Block-diagram of a typical closed loop system 

for H2-optimal control (Chen and Francis, 1995). 
 
where w, v, ψ and ζ are respectively the input, 
disturbance, output and the cost function or desired 
error to be minimized to meet the best performance. 
Consider ξ as the state vector of the system in 
discrete time and the control sequence v(k) is to be 
chosen to minimize the following cost function: 
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To find the optimal control solution, the following 
equations should be solved: 
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where A and B are parameters of the state space 
models and λ is the co-state vector. Combining these 
equations we have: 
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where:                    (4.7) 
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Half of the eigenvalues of S2 are inside the unit circle 
and, that is, they are stable and should be chosen. 
Thus, a matrix is defined whose columns are the 
generalized eigenvectors of S2 corresponding to 
stable eigenvalues as: 
                                                                (4.8) 
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The optimal state feedback control can be obtained as: 
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Since disturbances occur in the process and all of the 
states are not available, an Output Feedback for each 
local model should be used. First, the following 
notation is defined which is called a Symplectic Pair: 
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as is used in Equation (4.7). So a dynamic feedback 
should be designed, which is called a Finite-
Dimensional Linear-Time-Invariant (FDLTI) 
controller K, and also is causal and admissible if it 
achieves internal stability. Now consider the general 
output feedback case with: 
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These three assumptions guarantee that the 
symplectic pair, such as S2, belongs to domain 
of . Also, the second part means that the 
sensor noise weighing is nonsingular. Finally, the last 
assumption is related to the condition in the Model-
Matching Problem for the defined transfer functions 
on their domain.  So, we can define:    
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Then the unique optimal controller is: 
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where the state vector of the gain kopt, is  and 

η denote the estimated states and w is the measured 
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disturbance from the plant. This gain estimates a new 
vector  for each local model where v is the input 

that should be applied to the plant. 
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5. STABILITY ANALYSIS 

 
The stability of the global system is straightforward 
when the local models are stable and number of 
linearized models is sufficient. This can be shown by 
the following theorem: 
Theorem: Consider the set M of m stable subsystems: 
  for and    (5.1) kpk xAx =+1 mp ,,2,1 K= MAp ∈
  or using Lyapunov Stability for discrete systems 
(Slotine, and Li, 1991): 
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for positive definite matrix S , and pμ ’s are the 
interpolation functions such that:  
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Proof: Considering equation (5.3),     since 

, by expanding , the left hand side 

of the inequality (5.5) can be presented in the 
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1=∑
p

pμ
2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑

p
pμ

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑∑∑ SASA

p
p

p
pp

T

p
pp

2

μμμ  . . .    

0)2()(2 <−+− ΣΣ∑
≠

SSAASSAA q
T
pqp

qpp
p

T
pp μμμ                  

,       (5.6)     

    

MAA qp ∈, qp ∀∀ ,
The derivation is straightforward and thus the 
theorem can be proved. Two other approaches to  
stability are presented in (Wan and Kothare, 2004; 
McConley et al,2000). 

 
6. REAL-TIME IMPLEMENTATION RESULTS 

 
Consider, first, the Heating plant described in 
Figure 1.  The state-space representation for each 
local model of the plant was worked out and as a 
typical result two of the models are as follows:  
Local Model of Regime #1:  
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Local Model of Regime #2:  
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Now, by following the straightforward procedure 
from Equations (4.15)-(4.18) and (4.20)-(4.23), one 
can calculate S2, X, F and F0 for each local model 
presented above and also T2, Y, L and L0. Finally, the 
four optimal control gains are computed. The 
first two gains as part of the results are: 
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The optimal gains are implemented in 
SIMULINK/MATLAB/Real-Time environment 
using DAQ-Card to apply online optimal control for 
the thermal process. These controllers are combined 
via the validity and interpolation functions to obtain 
the global controller for the thermal plant.To 
illustrate the performance of the optimal multiple 
model controller three random setpoint changes at 15, 
120 and 160 sec. together with disturbance changes at 
35, 140 and 270 sec. with 20 sec. duration were 
applied. The data sequences are shown in Fig.5. The 
results of an experiment with multiple PID 
controllers (Aminzadeh et al, 2003) and its 
comparison to the optimal multiple-model based 
control are shown in Fig.6.  
 

 
Fig. 5: Applied setpoint and disturbance for 

multiple optimal controller of the Heating plant. 
 

To check the stability of multiple model based 
controller, it is sufficient to the check the stability of 
the local controllers and observers. Following the 
procedure will guarantee the stability but for 
demonstrations eigenvalues of two of the local 
controllers associated with the local models 
previously given are shown in Table 2. 

 
Fig. 6: Mult. optimal cont. responses of the Heat. P. 



For the TRMS plant, a typically similar study for 
setpoint following optimal control was performed 
and the results are shown in Figure 7. In this figure 
both the multiple optimal controller results and a 
single model based optimal controller were presented. 
Though the single optimal controller seems to act 
reasonable at these setpoint regions it is clear to see 
at the end of the setpoint its oscillation is increasing 
while the multiple model seems to act properly.  
 

7. CONCLUSIONS 
 

In this article a study of real-time control of two 
nonlinear processes were presented. The method was 
based on multiple linear models. A global multiple 
model optimal control was designed. Results of 
implementation of real-time control for the nonlinear 
heating plant and a Twin Rotor MIMO System 
(TRMS) were provided to show the effectiveness of 
the technique.  It is seen that the process can be 
controlled satisfactorily using the resulting optimal 
controllers. The heating plant is to some extent a 
slow dynamic a reasonably nonlinear plant. The 
TRMS is a highly nonlinear and fast process. 
Nevertheless the technique was quite effective in 
real-time control of both plants.  
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Table 2: Stability in the local regimes of Heat.plant

Stability for Regime #1 

-4
21 105.3977)(ˆ ⋅=Sλ  0.8711)(ˆ

22 =Sλ  

0.07935)(ˆ
21 =Tλ  -15

22 107.4905)(ˆ ⋅=Tλ  

 
Stability for Regime #2 

-5
21 107.9444)(ˆ ⋅=Sλ  0.89651)(ˆ

22 =Sλ  

0.07860)(ˆ
21 =Tλ  -17

22 101.3853)(ˆ ⋅=Tλ  
 

 
Fig.7: Multiple optimal control responses of the 

TRMS plant. Here, the TRMS the input is the 
voltage applied to the main motor (Uv) and output 
is the vertical position of the TRMS beam (pitch 
position, y=αv). 
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