
 

     

 
 
 
 
 
 
 
 
 

BOUNDARY CONTROL OF CONTAINER CRANES AS AN AXIALLY MOVING STRING SYSTEM 
 
 

Keum-Shik Hong* and Hahn Park** 
 
 

* School of Mechanical Engineering, Pusan National University, 
 San 30 Jangjeon-dong Gumjeong-gu, Busan, 609-735, Korea.  

Tel.: +82-51-510-2454, Fax: +82-51-514-0685, Email: kshong@pusan.ac.kr 
 ** Department of Mechanical and Intelligent Systems Engineering, Pusan National University, 

 San 30 Jangjeon-dong Gumjeong-gu, Busan, 609-735, Korea. 
Tel.: +82-51-510-1481, Email: hpark97@pusan.ac.kr 

 
 
 
 

Abstract: The control objectives in this paper are to move the gantry of a container crane 
to its target position and to suppress the transverse vibration of the payload. The crane 
system is modeled as an axially moving string equation, in which control inputs are 
applied at both ends, through the gantry and the payload. The dynamics of the moving 
string are derived using Hamilton’s principle for systems with changing mass. The 
Lyapunov function method is used in deriving a boundary control law, in which the 
Lyapunov function candidate is introduced from the total mechanical energy of the 
system. The performance of the proposed control law is compared with other two control 
algorithms available in the literature. Experimental results are given. Copyright © 2005 
IFAC 
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1. INTRODUCTION 

 
Cranes are widely used to transport cargo (payloads) 
from one place to another in various areas: ports, 
warehouses, factories, construction sites, etc. During 
the previous two decades, the endeavor to enhance 
the handling efficiency of loads in industry as well as 
at ports has pulled vigorous research in two 
directions: one is the fast movement of loads 
between two places. Cranes can be categorized into 
four types: container cranes, overhead cranes, tower 
cranes, and jib cranes. In this paper, we are focusing 
on the container cranes that transport containers 
between a container-ship and trucks or automated 
guided vehicle in a container terminal. 
 
In this paper, an energy-based (Lyapunov-function-
based) nonlinear control design for a container crane 
is investigated. The advantage of using an energy-
based control is that the nonlinearity of the plant can 
be fully incorporated into control law design when 
the energy function is differentiated along the plant 
dynamics. Also, the uniform asymptotic stability of 
the closed-loop system can be guaranteed by a 
properly chosen energy function. However, the 

disadvantage of energy-based control is that it is 
difficult to improve the transient performance (i.e., 
rise time, settling time, etc.) in a systematic way even 
though its stability is assured.  Hence, a trial and 
error approach to improve the transient performance 
is normally pursued. 
 
The contributions of this paper are the following. An 
axially moving string model for container cranes is 
firstly derived. As control input, the use of an AMD 
system beside the gantry input is proposed. A 
boundary control law that utilizes the gantry velocity, 
the payload velocity, and the slope of the rope at the 
gantry position is derived. The uniform asymptotic 
stability of the closed-loop system is assured. Finally, 
the developed algorithm is verified through experiments 
using a pilot crane. 
 
 

2. EQUATIONS OF MOTION 
 
2.1 System Modeling. 
 
Fig. 1a shows a schematic diagram of the container 
crane modeled as a flexible cable system. It is 



 

     

assumed that the rope is inextensible and its 
dynamics can be modeled as a translating (axially 
moving) string equation. It is also assumed that the 
sway motion of both the load and rope occurs in a 
two-dimensional vertical plane. The transversal 
(lateral) displacement of the rope from the gantry’s 
x-axis is relatively small compared with the 
displacement of the gantry itself. 
 
Let t  be the time, x  be the spatial coordinate in the 
x-axis, that is, along the longitudinal direction of the 
rope, ρ  be the mass per unit length of the rope, and 

)(tl  be the length of the rope, which changes in time. 
Let )(tyg  be the displacement of the gantry. Let 

),( txw  be the displacement of the rope from the 
vertical axis, x′  in Fig. 1a, at spatial coordinate x  
and time t . Let ),( txP  be the tension of the rope 
caused by the weights of the payload and the cable 
itself. Therefore, the displacement ),( txw , velocity, 
and acceleration of the rope at x and t are given by 
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where ( ) ( ) tt ∂⋅∂=⋅ /  and ( ) ( ) xx ∂⋅∂=⋅ /  denote the 
partial derivatives in t and x, respectively, and  
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(a) An axially moving string with inputs at the gantry 

and/or payload positions. 
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(b) The inclined payload. 
 

Fig. 1. Model as an axially moving string system 
with control inputs at both boundaries. 

xltDtD ∂⋅∂+∂⋅∂=⋅ /)(/)(/)( &  is the material derivative 
(see Munson et al. (2002) for its definition) due to 
the axial transport phenomenon of the cable while 
hoisting of the rope, in which l&  is the up-down 
velocity of the rope. Note that if a variable is a 

function of time only, then )( &⋅  is used instead of the 

partial derivative notation, for example, )(tl& , )(tyg& , 
etc. Note also that the gantry position has nothing to 
do with the spatial coordinate, the following 
relationship hold: 
 xxxxxx wwww ==  and . (2) 
 
 
2.2 Active Mass-Damper System 
 
In Fig. 1a, let gm , cm , and am  be the mass of the 
gantry, the payload, and the actuator (AMD system), 
respectively. Let )(tf g  and )(tfa  be the control 
force applied at the gantry and the payload, 
respectively. The AMD system is widely used in 
civil engineering, for example, in suppressing the 
structural vibration of a tall building. In that case, a 
huge mass can be used to generate a large control 
force. But, in our case because the active-mass 
should move on top of the spreader, its size is limited. 
Consequently, the control force is limited. Therefore, 
it would be desirable to use the gantry force to 
suppress a large sway angle and use the AMD force 
to suppress the residual sway motion that remains at 
the end of a gantry stroke. 
 
In Fig. 1b, the inclined spreader is depicted. Let ay  
be the displacement of the active-mass from its 
neural position. If the spreader is pulled by a single 
rope and the connection between the rope and the 
spreader is a pin joint, the inclination angle of the 
spreader can be described independently with the 
slope of the rope at its end point. However, in actual 
cranes, the spreader is normally pulled by at least 
four ropes. Therefore, the inclination, θ , of the 
spreader can be derived as a function of the slope of 
the rope at the end point as follow: 
 ( )ttlwx ),(tan 1−=θ . (3) 
As the spreader swings, the tension increase in the 
rope due to the active-mass changes from gma  to 

θcosgma , whereas a reversal force to the motion of 
the active-mass is generated as much as θsingma . 
The equation of motion of the active-mass is given 
by 

aaaaaa fgmykycym =+++ θsin&&& , (4) 
where c and k are the damping coefficient and the 
spring constant of the AMD system. Equation (4) 
provides an idea how large control force can be 
generated using am , c, and k. Now, the tension 
generated due to the payload and the AMD system 
becomes 
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In reality, the mass of the payload together with the 
spreader is much larger than that of the active-mass, 
which justifies the negligence of the second term in 
the right-hand side of (5). Also, by assuming that the 
sway angle is relatively small, the following simple 
form of the tension along the rope is used in this 
paper (Zhu and Ni, 2000; Zhu et al., 2001). 

( )( )( ))()()(),( tlgxtlmmtxP ac
&&−−++≅ ρ .  (6) 

 
 
2.3 Equations of Motion 
 
Now, to derive the equations of motion, the 
following extended Hamilton’s principle for systems 
with changing mass is used. 

( ) 02
1

=+−∫ dtWVTt
t

δδδ , (7) 

where T is the kinetic energy, V is the potential 
energy (the strain energy of the rope), and Wδ  is the 
virtual work done by the forces )(tf g  and )(tfa .  
 
The kinetic energy of the gantry, the rope, and the 
payload is 
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Note that (8) includes the translational kinetic energy 
of the rope due to hoisting (i.e., 2l&  terms) as well as 
the transversal kinetic energy of the rope (i.e., 

2)/( DtDw  terms). The potential energy is 
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where xε  is the strain of the rope. The second 
equality in (9) has been derived from the view point 
that if the infinitesimal distance dx  is replaced by 
the infinitesimal length ds , the strain xε  can be 
approximated as (Wickert, 1992) 

 2
2
1

xx w≅ε . (10) 

The virtual works done by )(tf g  and )(tfa  are 
 )),(()(),0()( ttlwtftwtfW ag δδδ += . (11) 
Because the rope length )(tl  changes with time, the 
domain of integration for the spatial variable x is 
time-dependent. Thus, the standard procedure for 
integration by part with respect to the temporal 
variable does not apply. The use of Leibniz’s integral 
rule, for instance, gives 
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Not

e that the above equation is used to calculate the 
variation of kinetic energy of rope. 
 

Following the general procedure for integration by 
parts with respect to the spatial variable and 
integrating (12) from 1t  to 2t , imposing vanishing 
variations of wδ  at 1t  and 2t , the result of (7) 
becomes 
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Setting the coefficient of wδ  to zero in (13) and 
using (1a,b,c) and (2) yields the governing equations 
as 
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                                               )(0 tlx <<  (14b) 
and the boundary conditions are 
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Note that  (15a,b) represent dynamical features of the 
gantry and the payload. It is remarked that if 0=l& , 

DtDw /  is equal to tw  and 22 / DtwD  is equal to ttw . 
Finally, it is observed that by setting 0=l&  and 

0)( =tfa , the resulting equations of (14)-(15a,b) 
coincide with those in Rahn et al. (1999). 
 
 

3. CONTROL LAW DESIGN 
 
The control objectives in this paper are, firstly, to 
regulate (move) the gantry at a target position and, 
secondly, to suppress the payload vibration when the 
gantry reaches its target position. For this, we adopt 
the Lyapunov function method, which yields the 
uniform asymptotic stability of the closed-loop 
system with a properly chosen Lyapunov function. 
For notational convenience, we use P , w , and l , by 
omitting the independent variables x and t, in place of 

),( txP , ),( txw , and )(tl . The control volume at time t, 
as shown in Fig. 2, is defined as the spatial domain 

)(0 tlx ≤≤ . 
 
Recalling that the plant in this paper consists of the 
axially translating rope, the gantry, and the payload 



 

     

(including the active-mass), the total mechanical 
energy of the system at time t is given by 
 )()()( tEtEtE pgropesystem ++= , (16) 
where 
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)(tErope  and )(tE pg+  represent the mechanical 
energy of the rope and that of the gantry and payload 
at time t, respectively. )(tEcv  denotes the 
mechanical energy of the rope in the control volume 
and, therefore, )(tErope  = )(tEcv  at time t. In (18), 

),( txε  denotes the mechanical energy of the rope per 

unit length (i.e., energy density), in which 2/2l&ρ  

and ( )( ) 2// 22
xwPDtDw +ρ  represent the energy 

density associated with the rigid-body translation and 
the transverse vibration of the rope, respectively. The 
two terms in the right-hand side of (19) denote the 
kinetic energy of the gantry and that of the payload 
including the active-mass, respectively. 
 
Remark 1: The differentiation of )(tEcv , using 
Leibnitz’s rule, yields: 

 ( )ttlldx
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0
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)(tEcv
&  describes the instantaneous growth and decay 

of total mechanical energy of the translating rope 
with variable length. Because the translating medium 
gains and loses mass during lowering ( 0>l& ) and  
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Fig. 2. The control volume of the axially moving 
rope with variable length.  

lifting ( 0<l& ), respectively, )(tEcv  increases and 
decreases accordingly. Even though the total 
mechanical energy involves the energy of the 
longitudinal motion, the stability analysis of the 
control algorithm for suppressing the transverse 
vibration can be done by omitting the energy in the 
longitudinal direction. 
 
At time tt ∆+ , the control volume becomes the 
spatial domain [ tltl ∆+ &)(,0 ], and the material 
particles of the rope has translated a distance tl ∆& . At 
time tt ∆+ , the mechanical energy of the particles 
occupying the spatial domain [ tltltl ∆+∆ && )(, ] 
becomes (Zhu, 2002, equation (26)) 
 ),0()()( tttlttEttE cvrope ∆+∆−∆+=∆+ ε& . (21) 
Therefore, by sending 0→∆t , the rate of change of 

)(tErope becomes  

 ),,0()( tlEtE cvrope ε&&& −=  (22) 
which results in the Reynolds transport theorem for a 
translating medium with variable length (Zhu and Ni, 
2000). 
 
Now, based upon (16) and Remark 1 (for suppressing 
the transverse vibration, the rigid-body translational 
motion of the rope can be omitted for the stability 
analysis of the closed-loop system), a Lyapunov 
function candidate for the purpose of suppressing the 
transverse vibration and regulating the gantry target 
position is considered as follows: 
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where aK  and pK  are the control gains. Now, the 
time-derivative of (23) is evaluated by (20) and 
applying the definition of material derivative to )(2 tV . 
First, ttx ∂∂ /),(ε  is calculated as follow: 
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Using (24), (22) is given by 
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The material derivative of the tension, DtDP / , is 
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The substitution of (26) into (25) yields: 
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Next, the material derivative of )(2 tV , by applying 
the boundary condition (15a,b) is given by 
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Using (27) and (28), DtDV /  is 
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Note that a positive and negative jerk l&&&  generates a 
stabilizing and destabilizing effect. However, the 
stabilizing effect from a positive jerk is generally not 
sufficiently large to suppress the inherent 
destabilizing effect (Zhu and Ni, 2000). So we can 
neglect the first term on the right-hand side of (29). 
 
The following feedback control law will make (29) 
negative semi-definite. 
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where adgp KKK ,,  and daK  are positive constants. 
That is, by (30a,b), (29) is given as follow: 
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Fig. 3. The 3-D pilot crane used in experiment: 
InTeCo 3DCrane (Poland). 

 

Note that if we set 0=l& , the material derivative has 
no meaning. Then, the control law in the case of a 
constant rope length becomes the following. 
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 { })),(()( ttlwKtf tdaa −= . (32b) 
And if we set 0)( =tfa , then (32a,b) are basically the 
same as the results of Rahn et al. (1999). The 
difference between (32a,b) and the results of Rahn et 
al.(1999) is caused by the difference of the Lyapunov 
function candidate. 
 
All the above developments are summarized in the 
following theorem. 
 
Theorem: Consider the plant (14) and (15a,b). Then, 
the closed-loop system with the control law (30a,b) is 
uniformly asymptotically stable. 
 
 

4. EXPERIMENTAL RESULTS 
 
In this section, experimental results of the closed-
loop system with the proposed control law (30a,b) 
are discussed. Fig. 3. shows the pilot crane used in 
experiment, which lacks the AMD system and, 
therefore, the responses of the closed-loop system 
with only the input to the gantry are discussed. The 
material property of the rope and the payload mass, 
respectively, are 01.0=ρ  kg/m and 73.0=m kg. 
 
It is noted that DttDw /),0(  in (30a) is given by 

),0()(),0(),0()(
),0(

twltytwltwty
tD

tDw
xgxtg

&&&& +=++= . 

At the top end of the rope, the displacement ),0( tw = 
0 because the rope is attached to the gantry and, 
therefore, ),0( twt  = 0. For this reason, the applied 
control force is given as a combination of the gantry 
velocity and the slope of the rope at the top end. 
 
Using the same experimental conditions, experiments 
for the three control algorithms, in case of a constant 
rope length, were performed. Fig. 4 shows the sway 
angle of the E2 coupling control law of Fang et al. 
(2003), in which the used control gains are 21=pK , 

40=dK , 001.0=eK , and 46=vK . Fig. 5 compares 
the responses of the Rahn’s control law with 

28.3=pK , 1.1=dgK , and 1=aK  and those of the 
proposed control law (32a) with 1.3=pK , 3.1=dgK , and 

8.2=aK . Comparing Fig. 4 and Fig. 5, a big 
improvement in sway suppression by using a PDE 
model is shown. Therefore, the control law design 
using a PDE model, rather than using an ODE model, 
is fully justified. However, observing Fig. 5, as far as 
the rope length is constant, there is not much 
improvement between the control law in Rahn et al. 
(1999) and the proposed one. 
 
Fig. 6 compares the response of the Rahn’s control 
law, while changing the rope length from 0.2 m to 
1.0 m and vice versa, and that of the proposed one  
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Fig. 4. Sway angle result of the E2 control law of 

Fang et al. (2003) (dotted lines: target values, 
solid lines: experimental results). 
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Fig. 5. Sway angle results of two control laws: 

Rahnet al. (1999)’s control law (solid line) and 
the  proposed control law (32a) (1-dot chain line) 
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(a) Sway angle while extending the rope 

from 0.2 m to 1.0 m. 
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(b) Sway angle while lifting-up the rope 

from 1.0 m to 0.2 m. 
 

Fig. 6. Comparison of two control laws with changes 
of rope length (solid line: the proposed control 
law (30a), 1-dot chain line: the control law of 
Rahn et al.(1999)) 

 
(30a). An improvement with the use of (30a) is 
shown. This improvement will get larger when l&  
gets larger. The used control gains, while lowering 
the payload, are 3.2=pK , 2.0=dgK , and 3.2=aK  
and those gains, while lifting up the payload, are 

1.9=pK , 9.5=dgK  and aK = 5. Finally, it is 
remarked that the proposed control law derived using 
a PDE model is much more effective in both 
suppressing the transverse vibration and also 
improving the rise time. 
 

5. CONCLUSIONS 
 
In this paper, we considered the anti-sway control 
problem of container cranes in the perspective of 
controlling an axially moving string system by 
applying control inputs at boundaries. Because the 
cranes are an underactuated mechanical system, the 
control input should be applied through dynamic 
coupling, that is, gantry motion. The main control 
input is normally given through the dynamics of the 
gantry motion, but for suppressing a small residual 
transverse vibration, an AMD can be effectively used. 
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