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Abstract: A decentralized model reference adaptive controller (MRAC) for a class
of large-scale systems with unmatched interconnections is developed in this paper.
A new reference model is proposed for the class of large-scale systems considered
and a stable decentralized adaptive controller is developed for each subsystem of
the large-scale system. It is shown that with the proposed decentralized adaptive
controller, the states of the subsystems can asymptotically track the desired
reference trajectories. To substantiate the performance of the proposed controller,
a large web processing line, which mimics most of the features of an industrial
web process line, is considered for experimental study. Extensive experiments were
conducted with the proposed decentralized adaptive controller and an often used
decentralized industrial PI controller. A representative sample of the comparative
experimental results is shown and discussed. Copyright c© 2005 IFAC.
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1. INTRODUCTION

Large-scale interconnected systems appear in a
variety of engineering applications such as power
systems, large structures, manufacturing pro-
cesses, communication systems, transportation
systems, and large scale economic systems. Decen-
tralized control schemes present a practical and
efficient means for designing control algorithms
which utilize only the state of each subsystem
without any information from other subsystems.
The ease and flexibility of designing controllers for
subsystems formed an important motivation for
the design of decentralized schemes since informa-
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tion exchange between subsystems is not needed.
Consequently, the decentralized adaptive control
problem for large-scale systems received and con-
tinues to receive considerable attention in the
literature in the last two decades (see for exam-
ple, Sandell et al. (1978); Ioannou (1986); Gavel
and Siljak (1989); Ikeda (1989); Siljak (1991);
Narendra and Oleng (2002); Mirkin and Gutman
(2003)).

In Sandell et al. (1978), a survey of early re-
sults in decentralized control of large scale sys-
tems was given. Stabilization and tracking using
decentralized adaptive controllers was considered
in Ioannou (1986) and sufficient conditions were
established which guarantee boundedness and ex-
ponential convergence errors; this result was pro-



vided for the case where the relative degree of
the transfer function of each decoupled subsys-
tem is less than or equal to two. Decentralized
control schemes that can achieve desired robust
performance in the presence of uncertain inter-
connections can be found in Ikeda (1989). A large
body of literature in decentralized control of large
scale systems can be found in Siljak (1991). Con-
sidering systems with matched interconnections,
in Narendra and Oleng (2002), it is shown that
in strictly decentralized adaptive control systems,
it is theoretically possible to asymptotically track
the desired outputs with zero error.

In this research, we consider a new reference
model for each subsystem that depends on the ref-
erence trajectory of the overall large-scale system;
that is, there is coupling between individual sub-
system reference models. As a result, the proposed
design relies on the fact that each subsystem
knows the reference trajectory of other subsys-
tems in the design of its decentralized controller.
Further, much of the past research has concen-
trated on the interconnections being matched. In
this research, we consider a class of large-scale sys-
tems with unmatched interconnections; the web
processing application, where the interconnections
are unmatched, directly falls into this class.

To validate the control scheme proposed, a large
scale system is considered and the control scheme
is implemented on it. The system considered for
this purpose is a High Speed Web Line (HSWL)
at Web Handling Research Center (WHRC), Ok-
lahoma State University (OSU). The HSWL is a
large state-of-the-art experimental platform that
mimics most of the features of a real-life web
process line; details about the platform are given
in Section 4.

The contributions of the paper are the following.
(1) A new MRAC solution to a class of large-
scale systems with unmatched interconnections is
proposed. (2) The proposed MRAC solution is
implemented on a state-of-the-art web handling
experimental setup which mimics most of the
features of a real-life web process line.

The remainder of the paper is organized as follows.
Section 2 presents the problem statement and the
new reference model. The problem of designing
a stable MRAC is reduced to that of finding a
solution to the Algebraic Riccati Equation (ARE)
in Section 3 and a decentralized controller for
each subsystem is proposed. The experimental
web platform is described in Section 4 and the
dynamic model of the experimental platform is
also presented. Comparative experimental results
with the proposed MRAC design and an indus-
trial PI controller are presented in Section 4.2.
Conclusions of the research are given in Section 5.

2. THE PROBLEM STATEMENT

We consider a large-scale system, S, consisting
of (N + 1) subsystems; each subsystem, Si, is
described by

Si : ẋi(t) = Aixi(t) + biui(t) +

N∑

j=0,j 6=i

Aijxj(t) (1)

where xi(t) ∈ R
ni is the state of the i-th sub-

system and ui(t) ∈ R is the input for all i ∈
I = {0, 1, · · · , N}. Notice that the interconnection
term (last term) in (1) is unmatched. It is assumed
that bi and Aij are known. Each subsystem ma-
trix, Ai ∈ Rni×ni is uncertain but it is assumed
that there exist constant vectors ki ∈ Rni such
that, for an asymptotically stable matrix Ami,

(Ai − Ami) = bik
⊤
i . (2)

The entire large-scale system, S, can be repre-
sented by

S : ẋ(t) = Ax(t) + Bu(t) (3)

where A is a matrix composed of block diago-
nal matrix elements Ai and off-diagonal matrix
elements Aij , and B is a block diagonal ma-
trix composed of bi, x⊤(t) = [x⊤

0
(t), . . . , x⊤

N (t)],
u⊤(t) = [u0(t), . . . , uN(t)], We assume that the
pair (A, B) is controllable.

Existing research (see for example, Ioannou (1986);
Gavel and Siljak (1989); Narendra and Oleng
(2002)) has considered the decentralized MRAC
problem for large-scale systems with a reference
model given by

ẋmi(t) = Amixmi(t) + biri(t) (4)

where xmi(t) are the reference state vectors
and ri(t) are bounded reference inputs. In this
research, we consider a different structure for the
reference model by making use of the known
interconnection matrices, Aij , in the reference
model. The reference model for each individual
subsystem, Smi is described by the equations

Smi : ẋmi(t) = Amixmi(t) + biri(t) − bik
⊤
mixm

+

N∑

j=0,j 6=i

Aijxmj(t).
(5)

where kmi ∈ R
n, n = n0 + n1 + · · · + nN , and

x⊤
m(t) = [x⊤

m0
, x⊤

m1
, · · · , x⊤

mN ]. With the struc-
ture for the reference model (5), the condition for
existence of solution to the control problem can
be specified in terms of the state matrices of the
reference model, Ami, as given by equation (13)
later.

The reason for including the term bik
⊤

mixm in
(5) becomes clear when we consider the reference
model for the entire large-scale system which is
given by

Sm : ẋm(t) = Amxm(t) + Br(t) − BK⊤
mxm. (6)

where r⊤(t) = [r0(t), . . . , rN (t)], Km = [km0, . . . , kmN ],
and

Am =






Am0 A01 A02 . . . A0N

A10 Am1 A12 . . . A1N

. . .
AN0 AN1 . . . . AmN




 .



Notice that if Am is not stable for given Ami,
then one can place the eigenvalues of Am −BK⊤

m

by choosing Km. If Am is asymptotically stable
for given Ami, then one can simply choose Km to
be the null matrix.

The goal is to design bounded decentralized con-
trol inputs ui(t) such that xi(t) are bounded and
the error ei(t) = xi(t) − xmi(t) converges to
zero, that is, limt→∞ ei(t) = 0 for all i ∈ I =
{0, 1, . . . , N}. The proposed controller and the
stability of the closed-loop system are presented
in Section 3 below.

3. CONTROLLER DESIGN AND STABILITY

A few definitions and results useful in the proof
are given in Section 3.1 followed by the main result
in Section 3.2.

3.1 Preliminaries

Definition 1. Byers (1988) Suppose A ∈ Cn×n

has no eigenvalue on the imaginary axis. Let
U ⊂ Cn×n be the set of matrices with at least one
eigenvalue on the imaginary axis. The distance
from A to U is defined by

δs(A) = min {‖E‖ : A + E ∈ U} . (7)

It can be shown thatByers (1988)

δs(A) = min
ω∈R

σmin(A − jωI). (8)

Lemma 1. Byers (1988) Let ρ ≥ 0 and define

Hρ =

[

A −ρI
ρI −A⊤

]

. (9)

Then Hρ has an eigenvalue whose real part is zero
if an only if ρ ≥ δs(A). This theorem characterizes
δs(·) by

δs(A) = inf {ρ : Hρ is hyperbolic}. (10)

Algorithms to compute δs(·) are illustrated in
Byers (1988); He and Watson (1998); Loan (1985).

Lemma 2. Aboky et al. (2002) Consider the Al-
gebraic Ricatti Equation

A⊤P + PA + PRP + Q = 0. (11)

If R = R⊤ ≥ 0, Q = Q⊤ > 0, A is Hur-
witz, and the associated Hamiltonian matrix H =
[

A R
−Q −A⊤

]

is hyperbolic, i.e., H has no eigen-

values on the imaginary axis, then there exists a
unique P = P⊤ > 0, which is the solution of the
ARE (11).

3.2 Main Result

Theorem 3. Given the large scale system (1) and
the reference model (5), there exists a positive def-
inite matrix Pi = P⊤

i such that the decentralized

control law and the parameter updation law given
by

ui(t) = ri(t) − k⊤
mixm(t) − k̂⊤

i xi(t) (12a)

˙̂
ki(t) = −(e⊤i (t)Pibi)xi(t) (12b)

where k̂i is estimate of ki, render the closed-loop
system exponentially stable if

δs(Ami) >
√

Nξi. (13)

Proof: Define subsystem errors as ei(t) , xi(t)−
xmi(t). Then, the error dynamics of the closed-
loop system defined by (1), (5), and (12) can be
obtained as

ėi(t) = Amiei(t) + bik̃
⊤
i (t)xi(t) +

N∑

j=0,j 6=i

Aijej(t). (14)

where k̃ , ki − k̂. Consider the following Lya-
punov function candidate

V (ei, k̃i) =

N∑

i=0

(e⊤i Piei + k̃⊤
i k̃i). (15)

The derivative of the Lyapunov function candi-
date along the trajectories of (14) and (12b) is
given by

V̇ (ei, k̃i) =

N∑

i=0

(e⊤i (A⊤
miPi + PiAmi)ei

+

N∑

j=0,j 6=i

[e⊤i Pi
︸︷︷︸

α⊤

Aijej
︸ ︷︷ ︸

β

+ e⊤j A⊤
ij

︸ ︷︷ ︸

β⊤

Piei
︸︷︷︸

α

]).

(16)

Using the inequality α⊤β + β⊤α ≤ α⊤α +
β⊤β, ∀α, β ∈ Rni , for terms in braces in (16)
and rearranging the terms, we obtain

V̇ (ei, k̃i) ≤

N∑

i=0

{e⊤i (A⊤
miPi + PiAmi)ei + Ne⊤i P 2

i ei.

+ e⊤i

(
N∑

j=0,j 6=i

A⊤
ijAij

)

︸ ︷︷ ︸

Xi

ei} (17)

≤

N∑

i=0

{
e⊤i (A⊤

miPi + PiAmi + NP 2
i + ξiI)ei

}

where ξi , λmax(Xi). Therefore, if there exist
symmetric positive definite matrices Pi such that

A⊤
miPi + PiAmi + Pi(NI)Pi + (ξi + ǫi)I = 0 (18)

for ǫi > 0 then

V̇ (ei, k̃i) ≤ −

N∑

i=0

ǫie
⊤
i ei . (19)

and V (ei, k̃i) qualifies as a Lyapunov function
and the equilibrium point ei = 0 is exponentially
stable for all i ∈ I. Proof of Theorem 3 now rests
on the existence of symmetric positive definite
solution Pi to the ARE (18). To this end, we



invoke Lemma 2. Define the Hamiltonian for the
ARE (18) as

Hi =

[

Ami NI

−(ξi + ǫi)I −A⊤
mi

]

. (20)

The eigenvalues of the Hamiltonian may be found
by writing

det(sI −Hi) =

[

sI − Ami −NI
(ξi + ǫi)I sI + A⊤

mi

]

= det[G(s)] = 0.

(21)

where G(s) = [(sI + Ami)
⊤(sI − Ami) + N(ξi +

ǫi)I]. From (21), it may be seen that Hi is hyper-
bolic if G(jω) is non singular. Notice that,

−G(jω) = −(jωI + Ami)
⊤(jωI − Ami) − N(ξi + ǫi)I

= (Ami − jωI)H(Ami − jωI)
︸ ︷︷ ︸

−N(ξi + ǫi)I.

(22)

From (8), we see that the term in braces in (22)
is always greater than δ2

s(Ami)I. Thus, if

δ2
s (Ami) − Nξi > 0 (23)

we can always choose a value for ǫ as γ(δ2

s(Ami)−
Nξi)/N for some γ in the range 0 < γ < 1 to make
−G(jω) in (22) positive definite, thus ensuring the
existence of a symmetric positive definite Pi to
satisfy the ARE (18). ♦

Section 4 briefly presents details about the exper-
imental platform considered for implementation
of the proposed control algorithm, the dynamic
model of the plant, and the experimental results.

4. WEB PROCESSING APPLICATION

A web is any material which is manufactured
and processed in continuous, flexible strip form.
Examples include paper, plastics, textiles, strip
metals, and composites. Web processing pervades
almost every industry today. It allows us to mass
produce a rich variety of products from a continu-
ous strip material. Products that include web pro-
cessing somewhere in their manufacturing include
aircraft, appliances, automobiles, bags, books, di-
apers, boxes, newspapers, magnetic tapes, and
many more. Typically, web process lines consist of
an unwind section, one or more process sections,
and a rewind section. Web tension and velocity
in each of these sections are key variables that
influence the quality of the finished web and hence
the products manufactured from it.

Figure 1 shows a picture of the experimental
platform. It is possible, theoretically, to “decen-
tralize” this large scale system into subsystems
in an arbitrary way. However, it is convenient if
subsystems are chosen as physically identifiable
segments in the system. Consequently, four “sec-
tions” are identified as subsystems in Figure 1:
(1) unwind section, (ii) master speed section, (ii)
process section, and (iv) rewind section. Each of
these sections is equipped with a drive motor to

impart velocity/tension to the web and sensors
(loadcells for tension measurement and encoder
or some other sensor for speed measurement). As
the name indicates, the master speed section has
a driven roller which is used to set the reference
web transport speed for the entire web line, and
is generally the first driven roller upstream of
the unwind roll in almost all web process lines.
This section is not used to regulate the tension
in the spans adjacent to it. Except the master
speed section, all the other sections use two local
feedback signals, namely, the web tension and web
velocity; the master speed section uses only the
web velocity as feedback signal. Figure 2 shows

Fig. 1. Picture of the Experimental Web Platform

a line sketch of the decentralization scheme con-
sidered. In Figure 2, M0, M2 and M3 are the
drive motors for the unwind section, process sec-
tion, and the rewind section and M1 is the drive
motor for master speed section. Except for M1,
the other motors use a tension feedback (from
loadcell, indicated by LC in Figure 2) and a speed
feedback. The motors M0 and M3 in Figure 2
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Fig. 2. Sketch of the Platform Showing Driven
Rolls/Rollers and Tension Zones

are 30 bhp (brake horse power), 3-phase RPM
AC motors under vector control where as the
motors M1 and M2 are 15 bhp, 3-phase RPM
AC motors under analog HR-2000 control. The
motor drive systems, the real-time architecture
which includes micro-processors, I/O cards, and
the real time control environment AutoMax, and
the other mechanical hardware are from Rockwell
Automation. The lateral guides shown in Figure
1 are Fife displacement guides. These guides are
controlled independent from the real-time control
software through dedicated controllers.

The dynamics of each of the four sections is briefly
presented in the following.



4.1 Dynamic Model

Nonlinear dynamic models for each of the sections
in web processing line are developed in Branden-
buerg (1972); Whitworth and Harrison (1983). For
the purpose of implementation, these nonlinear
models are linearized around an equilibrium point.
Such linearized models may be found in Shelton
(1986); Siraskar (2004).

Unwind Section:

ẋ0 =

[

Ṫ1

V̇0

]

= A0x0 − b0U0 +

3∑

j=1

A0jxj (24)

where A02 and A03 are null matrices, and

A0 =





−vr1

L1

(t0 − AE)

L1
R2

0/J0 −bf0

J0



 , b0 =

[
0

n0R0

J0

]

, A01 =

[
AE−tr1

L1

0

]

Master Speed Section:

ẋ1 = V̇1 = A1x1 + b1U1 +

3∑

j=0,j 6=1

A1jxj (25)

where A1 = −bf1/J1, b1 = n1R1/J1, A10 =

[
−R2

1

J1

, 0

]

,

A12 =

[
R2

1

J1

, 0

]

, A13 = [0, 0]

Process Section and Rewind Section:

ẋi =

[

Ṫi

V̇i

]

= Aixi + biUi +

3∑

j=0,j 6=i

Aijxj (26)

for i = 2, 3 where Ai =

[ −vri

L2

(AE−tri)
Li

−R2
i

Ji

−bfi

Ji

]

, bi =

[
0

n2R2

J2

]

, A20 =

[
vr1

L2

0

0 0

]

, A21 =

[
tr1−AE

L2

0

]

, A23 =

[
0 0

R2

2

J2

0

]

A32 =

[
υr2

L3

tr2−AE
L3

0 0

]

Notice that the

elements of the interconnection matrices Aij , and
the elements of the input matrices bi involve the
roller radii, the polar moments of inertia, the
reference tension/velocity, gearing ratio between
the drive motor and the driven roller, and the web
material properties. These quantities are known in
advance. However, the system matrices Ai contain
a term with coefficient of viscous friction which is
unknown.

4.2 Experiments

To evaluate the effectiveness of the proposed con-
troller, two sets of experiments were conducted. In
the first set of experiments, a control scheme us-
ing Proportional-Integral (PI) controllers, which
is currently used in most of the industrial web
process lines, is implemented. This control scheme
incorporates a tension control loop and a velocity
control loop for each section (except for the master
speed section which uses only a speed control

loop). Though this scheme is very simple to imple-
ment, its performance is often limited and tuning
the P and I gains is a tedious process. In the
second set of experiments, the proposed controller
is implemented. Experimental results with these
control schemes show that the proposed control
scheme offers a marked improvement in terms of
lesser web tension error. The results of experi-
ments with PI control scheme are presented in
Section 4.2.1 and the results of experiments with
the proposed controller are presented in Section
4.2.2.
4.2.1. Results with PI Control Scheme A series
of experiments were conducted using the PI con-
trol scheme at different reference web tensions and
different reference web velocities. In each case, the
PI controllers were tuned carefully to yield best
possible performance. As a representative sample,
results of experiments conducted with PI control
scheme at 1000 fpm are presented. The reference
web tension was set to 14.35 lbf. Figure 3 shows
the web velocity error at master speed section and
the web tension error at each section. The top
plot in Figure 3 shows the velocity error at master
speed section. The subsequent plots in the figure
show the tension error at each section. It can
be seen from Figure 3 that there is considerable
deviation of web tension from reference tension.
Such variations in web tension are undesirable
since they deteriorate the quality of the product
made from web.

4.2.2. Results with the Proposed Controller In
the second set of experiments, the proposed con-
troller is implemented with the same reference
web velocities and reference web tensions under
the same conditions. Numerical values of vari-
ous parameters used in the control design are:
vri=1000 fpm, tri =14.35 lbf, L1= 20 ft, L2=33
ft, L3=67 ft, J0=8 lbf-ft2, J1 = J2=2 lbf-ft2,J3=4
lbf-ft2, AE=2000 lbf, n0 = n3 = 0.5, n1 = n2 = 1,
R0=1.25 ft, R1 = R2=0.339 ft, R3=0.67 ft.

The matrices Ami are chosen as explained in
the following. For the unwind section, Am0 =
[−vr0/L1, (AE − t0)/L1 ; C01, −C02] where
C01 = 120 and C02 = 2000; for the master speed
section, Am1 = C12 = 4000; for the process
and rewind sections, Ami = [−vri/Li, (AE −
tri)/Li ; −Ci1 , −Ci2] for i = 2, 3 where C21 =
1500, C22 = 400, C31 = 15, C32 = 15.

It is verified that the condition given in (23) is
satisfied for the given matrices Ami. The LQR
algorithm is used to obtain the feedback gain Km,
which ensures that the reference states go to their
desired values in an optimal sense and the rows of
Km are km0, km1, km2, and km3 respectively. The
values of Cij and Km given above are computed
for reference web velocities of 1000 fpm and 1500
fpm and a reference web tension of 14.35 lbf and
controller given in (12) is implemented.



Figure 4 shows experimental results conducted at
a reference web velocity of 1000 fpm. The top
plot in Figure 4 shows the web velocity error at
master speed section and the subsequent plots
show web tension errors at each section. It can
be observed that there is a substantial reduction
in the amplitude of tension errors – to the tune
of 75% – at each section as compared to the
industrial PI control scheme.

5. CONCLUSIONS

Decentralized adaptive controller design for a
class of large-scale systems with unmatched in-
terconnections is investigated. A new reference
model that includes known interconnections is
considered and a stable decentralized MRAC de-
sign is proposed. A large experimental web line
is used for evaluating the proposed decentralized
design. Comparative experimental results with an
often used industrial PI controller show that the
proposed decentralized design gives improved reg-
ulation of web tension.
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Fig. 3. Decentralized PI controller: Reference ve-
locity 1000 ft/min

0 5 10 15 20 25 30 35 40

−10

0

10

V
1 (

fp
m

)

0 5 10 15 20 25 30 35 40

−10

0

10

T
1 (

lb
f)

0 5 10 15 20 25 30 35 40

−10

0

10

T
2 (

lb
f)

0 5 10 15 20 25 30 35 40

−10

0

10

T
3 (

lb
f)

time (sec)

Fig. 4. Decentralized adaptive controller: Refer-
ence velocity 1000 ft/min


