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Abstract: This paper deals with the implementation of min-max model predictive
control for constrained linear systems with bounded additive uncertainties and
quadratic cost functions. This type of controller has been shown to be a continuous
piecewise affine function of the state vector by geometrical methods. However, no
algorithm for computing the explicit solution has been given. In this paper, we show
that the min-max optimization problem can be expressed as a multi-parametric
quadratic program, and so, the explicit form of the controller may be determined
by standard multi-parametric techniques.Copyright c©2005 IFAC.
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1. INTRODUCTION

Model predictive control (MPC) is one of the
control techniques that is able to cope with model
uncertainties in an explicit way (Camacho and
Bordóns, 2004). One approach used in MPC when
uncertainties are present, is to minimize the ob-
jective function for the worst possible case. This
strategy is known as min-max and was origi-
nally proposed in (H.S.Witsenhausen, 1968) in
the context of robust receding control. In robust
MPC the problem was first tackled in (P.J.Campo
and Morari, 1987). In this paper we consider
bounded additive uncertainties. For other ap-
proaches see (Kothare et al., 1996; Y.J.Wang and
Rawlings, 2003; J.H.Lee and Yu, 1997; Bemporad
et al., 2003) and the references therein.

Min-max MPC schemes can be classified in
open loop and feedback min-max controllers (see
(Mayne et al., 2000)). Feedback min-max MPC
obtains a sequence of feedback control laws that
minimizes the worst case cost, while assuring
robust constraint handling. It requires the so-

lution of a very high dimensional problem that
makes its practical implementation very hard (see
(Scokaert and Mayne, 1998)). For cost functions
based on ‖.‖∞ and ‖.‖1 norm, the explicit solution
has been obtained (see (Bemporad et al., 2003;
E.C.Kerrigan and Maciejowski, 2004)). This re-
sult has not been extended to quadratic cost func-
tions although approximate solutions have been
given under an stochastic approach in (Sakizlis et

al., 2004).

Open loop min-max MPC obtains a single con-
trol input sequence that minimizes the worst case
cost (see (P.J.Campo and Morari, 1987; Allwright
and Papavasiliou, 1992)). This formulation is con-
servative and underestimates the set of feasible
input trajectories. The solution proposed in the
literature is to minimize a sequence of control
corrections efforts to a given linear feedback sta-
bilizing control law for the nominal plant. In
this way, some kind of feedback is introduced
in the prediction without increasing the compu-
tational effort (see (Bemporad, 1998; Alamo et

al., 2003; Löfberg, 2003)).



In this paper we consider the constrained open
loop min-max MPC with linear feedback control
law and quadratic cost functions. For these con-
trollers, the size of the optimization problem is
exponential on the prediction horizon. Suboptimal
approaches with polynomial complexity are given
in (Alamo et al., 2003; Löfberg, 2003).

Recently, the piecewise linearity of this class of
min-max MPC has been proved by geometrical
methods in (Ramı́rez and Camacho, 2001). How-
ever no algorithm has been given for determining
the solution. In this paper, we show that the min-
max optimization problem can be expressed as a
multi-parametric quadratic problem (mp-QP) so
the piecewise affine nature of the feedback control
law is proven through Karush-Kuhn-Tucker opti-
mality conditions. It is noteworthy to note that
the resulting mp-QP problem is not equivalent to
the one that appears in nominal MPC although it
has been treated in recent multi-parametric works
(see (Tøndel et al., 2003)).

The paper is organized as follows: Section 2 de-
fines the control problem to be solved. Section 3
shows how to transform min-max MPC into an
mp-QP problem. An example is given in section
4 while some concluding remarks are given in
Section 5.

2. PROBLEM FORMULATION

Consider the discrete invariant time linear system
with bounded uncertainties

xk+1 = Axk + Buk + Dwk, (1)

where xk ∈ <nx is the state, uk ∈ <nu is the
control input, and wk ∈ <nw is the uncertainty
that is supposed to be bounded, that is wk ∈ W

where W is a closed polyhedron that contains the
origin.

The control input is given by uk = Kxk + vk,
where K is chosen in order to achieve some desired
property for the non constrained problem such
as stability or LQR optimality (see (Bemporad,
1998; Alamo et al., 2003; Löfberg, 2003)). The
MPC controller will compute the optimal se-
quence of correction control inputs vk. The dy-
namics of the system can be rewritten as

xk+1 = AKxk + Bvk + Dwk ,

AK = (A + BK).

The objective function is defined as

V (x,v,w) =

N−1
∑

j=0

[xT
j Qxj + uT

j Ruj ] + xT
NPxN ,

with Q > 0, P > 0 and R ≥ 0.

The initial state is x0 = x. Vector v =
{v0, v1, . . . , vN−1} is the sequence of correction

control inputs, and w = {w0, w1, . . . , wN−1} rep-
resents a possible sequence of input disturbances
to the system.

Variables xj and uj are the predicted state and
control input respectively and are given by

xj = A
j
Kx +

j
∑

i=1

Ai−1
K Bvj−i +

j
∑

i=1

Ai−1
K Dwj−i,

uj = Kxj + vj .

(2)
We consider state and input constraints xk ∈ X

and uk ∈ U where X and U are polyhedral sets.
In order to achieve stability, a polyhedral terminal
region constraint, xN ∈ Ω, will also be taken
into account. Note that in this formulation, any
invariant time linear constraint can be taken into
account, as for example operational constraints of
the form

Okuk ≤ Lkxk + ok.

For simplicity on the notation, only state and
input constraints are considered.

The min-max constrained predictive controller re-
sults in the solution of the following optimization
problem denoted P (x)

J∗(x) = min
v

max
w∈WN

V (x,v,w), (3)

subject to:

xj(x,v,w) ∈ X, ∀w ∈ WN , j = 0 . . .N,

xN (x,v,w) ∈ Ω, ∀w ∈ WN ,

uj(x,v,w) ∈ U, ∀w ∈ WN , j = 0 . . .N − 1.

(4)
where WN denotes the set of possible disturbance
sequences of length N :

WN = {w = {w0 . . . wN−1}| wi ∈ W, ∀i}.

This optimization problem is solved at each sam-
ple instant. An optimal vector of control correc-
tion signals v∗ is obtained and the control input
u0 = Kx + v∗0 = KMPC(x) is applied. All this is
done in a receding horizon manner, see (Camacho
and Bordóns, 2004).

An appropriate choice of the cost function and the
terminal region may assure robust convergence to
a bounded set and robust constraint fulfillment
from any feasible initial state (see Theorem 1,
(Alamo et al., 2003)), namely

• If x ∈ Ω then AKx + Dw ∈ Ω, ∀w ∈ W .
• If x ∈ Ω then Kx ∈ U .
• P − AT

KPAK > Q + KT RK.

The stability of AK = A + BK guarantees the
existence of a positive definite matrix P that
satisfies the third condition.

2.1 Min-max MPC computation

In order to implement the proposed controller,
problem (3) subject to constraints (4) has to be



solved at each sampling time. Let us define the
feasible set SF as the pairs (x,v) which satisfy
constraints (4). Taking into account (2), when X ,
Ω and U are polyhedral regions, matrices F, G, m

and M can be found such that the feasible set SF

can be expressed as

SF = {(x,v)|Fx + Gv ≤ m + Mw, ∀w ∈ WN}.
(5)

For the system described (i.e. linear systems and
additive uncertainties) it is possible to reduce the
number of constraints defining the feasible set SF .
It can be seen that definition (5) is equivalent to

SF = {(x,v)| Fx + Gv ≤ d},

where d is a vector such that its i-th entry satisfies

di = mi + min
w∈WN

Miw,

and mi and Mi are the i-th element and row of
vector m and matrix M respectively.

The cost function, V (x,v,w), is a quadratic func-
tion of x, v and w. That is, taking into account
(2), matrices Hx, Hv and Hw can be found in such
a way that

V (x,v,w) = ‖Hxx + Hvv + Hww‖2
2.

The cost function is a convex function on x, v

and w. The maximum of a convex function always
lays in the boundary of the feasible region. Thus,
the maximum in the future possible uncertainty
trajectories can be obtained evaluating the cost
function at the set of vertices of the hypercube
WN , denoted by V(WN ) (see (Bazaraa and Shetty,
1979)). That is,

max
w∈WN

V (x,v,w) = max
w∈V(WN )

V (x,v,w).

We conclude that PN (x) can be rewritten as

J∗(x) = min
v

max
w∈V(WN )

‖Hxx+Hv ,v+Hww‖2
2 (6)

s.t. Fx + Gv ≤ d.

The complexity of this optimization problem is
very high. The max function is convex but its
evaluation requires the computation of the cost
function for each possible vertex of WN . The
number of these vertices is exponential with the
prediction horizon N .

3. MIN-MAX AS A QUADRATIC
PROGRAMM

It has been shown by geometrical methods (see
(Ramı́rez and Camacho, 2001)) that a min-max
MPC with a quadratic objective function and
linear constraints turns out to be a piecewise affine
function of the state. We show in this section
that the min-max problem (3) can be expressed as

a multi-parametric quadratic programming prob-
lem and that the explicit min-max MPC con-
troller can be obtained using multi-parametric
techniques.

If V (x,v, 0) (the part of the cost function that
does not depend on the uncertainty) is added
and subtracted to the cost function V (x,v,w) the
min-max problem can be expressed as

J∗(x) = min
v,γ

V (x,v, 0) + γ

subject to

Fx + Gv ≤ d,

γ ≥ V (x,v,w) − V (x,v, 0), ∀w ∈ V(WN ),

with

V (x,v,w)−V (x,v, 0) = w
T HT

wHww+2wT HT

w (Hxx+Hvv).

These constraints are all affine on x and v,
however, it is important to remark that each one
of them, one for each vertex of WN , is defined
by a different gain on v that depends on the the
vertex (2wT HT

wHv), so they can not be reduced
in the same way as the constraints (4) (although
standard constraint reduction techniques may be
applied) and an exponential number of constraints
with the prediction horizon are posed.

In order to obtain an equivalent problem in which
the functional does not depends on the state
vector, we introduce the following variable change

z , v + [HT
v Hv]

−1HT
v Hxx,

then, the min-max problem defined in (3), P (x),
is equivalent to

J∗(x) = xT Y x + min
z,γ

1

2
zT Hz + γ (7)

subject to

Gmz + gmγ ≤ Wm + Smx, (8)

Gcz ≤ Wc + Scx. (9)

The positive definiteness of R assures that H is
positive definite (H = 2HT

v Hv � 0). The linear
inequalities described by matrices Gm, gm, Wm

and Sm correspond to the maximization of the
functional. The number of these inequalities, as
the number of possible vertices, is exponential
with the prediction horizon N . The inequalities
defined by Gc, Wc and Sc represent the robust
constraints of the problem. The matrices that
define (7), (8) and (9) can be obtained from the
problem parameters.

It is important to note, that the functional is still
strictly convex because H � 0, and γ corresponds
to the maximum of a set of linear functions.
This means that the optimization problem has an
unique optimizer z∗, γ∗ and dual degeneracy can-
not take place (see (Bazaraa and Shetty, 1979)).
Also, in the optimum there is always at least



one constraint out of Gm, gm, Wm and Sm that
is satisfied in a tight way, this is, is satisfied
with the equality sign, as for any input correction
trajectory v, there is at least a vertex where the
function takes the maximum value for all possible
uncertainties.

3.1 Application of Multi-Parametric Programming

to Min-Max

Multi-parametric quadratic (mp-QP) problems
have been studied in the literature in the MPC
context (see (Bemporad et al., 2002; Mayne and
Rakovic, 2002; Seron et al., 2002)). However, the
mp-QP problem addressed in those references is
different from the one posed in min-max MPC.
The mp-QP problem posed in a nominal MPC
controller is defined by a definite positive matrix,
and therefore invertible. In min-max MPC, the
auxiliary variable γ does not take part in the
quadratic cost and so the resulting matrix is not
invertible. The algorithm presented in (Tøndel et

al., 2003) deals with semi-definite positive mpQp
programs and can be applied to the problem pre-
sented here.

The active constraints that define the solution in
a given state vector, can be distinguished in those
corresponding to the original constraints of the
system, and those corresponding to the evaluation
of the maximum.

Definition 1. Given a state vector x and the opti-
mal solution pair z∗ and γ∗, we define the active
vertices constraints set I , the set of constraints
out of (8) which satisfy

G̃mz∗ + g̃mγ∗ − W̃m − S̃mx = 0. (10)

Definition 2. Given a state vector x and the opti-
mal solution pair z∗ and γ∗, we define the active
constraints set A, the set of constraints out of (9)
which satisfy

G̃cz
∗ − W̃c − S̃cx = 0. (11)

The active vertices constraints set of a solution
defines the vertices in which the max function
attains the maximum while the active constraints
set defines the constraints of P (x) which are
satisfied in a tight way for the optimal solution
in a given state vector.

3.2 Degeneracy

Degeneracy is a key issue in multi-parametric op-
timization. The optimum vector of lagrange mul-
tipliers may be not uniquely defined, this is known
as primal degeneracy). In this case, the optimum
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Fig. 1. State space partition of the min-max
controller of for system (12) for prediction
horizons N=1,3,5.

can be defined using projection algorithms as ex-
plained in (Bemporad et al., 2002). Dual degener-

acy cannot occur as in the case of general mpQp
problems (see (Tøndel et al., 2003)), because as
pointed before, the problem is strictly convex.
This means that the solver does not need to take
into account these degenerate situations.

4. EXAMPLE

Consider the double integrator with bounded ad-
ditive uncertainties

A =

[

1 1
0 1

]

, B =

[

0
1

]

, D =

[

0.1
0

]

. (12)
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Fig. 2. Simulation results for system (12) with a
min-max controller with prediction horizon
N=8 for different values of a constant distur-
bance wk .

The uncertainty satisfies ‖wk‖∞ ≤ 1 and the state
and control input are constrained, namely

10 ≤ xk ≤ 10,−1 ≤ uk ≤ 1

The control performance objectives are described
by

P = Q =

[

1 0
0 1

]

, R = 10,

and as linear feedback law is considered the un-
constrained LQR control K = [−0.2054,−0.7835].

The critical regions of the resulting controller for
prediction horizons of 1, 3, and 5 can be seen in
Figure 1. Figure 2 shows simulation results for
different constant values of the uncertainty for a
controller with a prediction horizon of 8. Table

Table 1. Number of vertices of WN (Ver)
and number of critical regions (Reg)
for different prediction horizons (N) for

system (12).

N 1 3 5 6 8 10

Ver 2 8 32 64 256 1024
Reg 4 45 71 97 147 201

Table 2. Explicit control law for the
min-max controller with prediction

horizon N=1 for system (12).

If















0.4 0.4
1 0
1 1
−1 0
−1 −1
−0.1 −0.43
0.1 0.43















x ≤















0
10
9.9
10
9.9
1
1















then

v∗(0) =
[

0.1027 0.3463
]

x

else if







−1 0
−2.26 −9.62

0 1
1 1







x ≤







10
−22
10
9.9







then

v∗(0) = −1 +
[

0.2054 0.7835
]

x

else if







1 0

2.26 9.62
0 −1
−1 −1







x ≤







10

−22
10
9.9







then

v∗(0) = 1 +
[

0.2054 0.7835
]

x

else problem is unfeasible

u∗(0) =
[

−0.2054 −0.7835
]

x + v∗(0)

1 shows the number of vertices of the polyhedra
WN and number of critical regions for different
prediction horizons.

Table 2 presents the control algorithm that has
to be implemented to obtain the optimum control
correction effort v(0) for a prediction horizon of 1.
It can be implemented as a look up table.

As can be seen in Figure 1 the explicit solution for
a prediction horizon of 1 consists on six different
regions. However, the optimum solution has the
same expression in some of them, so it can be
unified in only three polyhedral regions of interest
that have been remarked in the figure. It can
be seen, that where the optimum control law is
saturated, the control correction input v, has the
same gain as the feedback law K = [−0.2054 −
0.7835], but of inverted sign so the applied input
is independent of the state vector. In this figure,
vertex I = 1 and vertex I = 2 correspond to w = 1
and w = −1 respectively, while constraint A = 9
and A = 10 correspond to u0 ≥ −1 and u0 ≤ 1



respectively. The dotted line is the region of the
state space where the maximum of the optimum
solution is attained at I = [1, 2] and is a lower
dimension region.

The software used to obtain the explicit solutions
has been developed in MATLAB. The algorithm
implemented is the one proposed in (Tøndel et

al., 2003). Although no theoretical result has
been obtained, the complexity of the controllers
observed in numerous systems is similar to the
complexity of a standard MPC explicit control law
of the same prediction horizon.

5. CONCLUSIONS

The paper has shown that a min-max MPC with
a quadratic objective function can be transformed
into an mp-QP problem. This allows us to obtain
an alternative and more compact proof of the
piecewise affine nature of this type of controllers
than the one described in literature.

The explicit solution of the min-max not only
makes possible the implementation in real plants
of these controllers, but also gives an insight of
the underlying structure.
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(2002). Finitely parameterised implementa-
tion of receding horizon control for con-
strained linear systems. In: Proc. Amer-

ican Control Conference. Anchorage, AK.
pp. 4481–4485.

Tøndel, P., T.A. Johansen and A. Bemporad
(2003). An algorithm for multi-parametric
quadratic programming and explicit MPC
solutions. Automatica 39(3), 489–497.

Y.J.Wang and J.B. Rawlings (2003). A new robust
model predictive control method I: theory
and computation. Journal of Process Control

14(3), 231–247.


