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Abstract: This paper considers a wavelet-based approach to the blind separation of
signals (BSS) including reflections such as sound. The BSS for the instantateous
mixture case is achieved by maximizing the mutual information between input
and output signals or by zeroing the cross-correlations of separated signals. For
making these methods applicable to the convolutive mixture case, it is important
to transform signals in the time domain into those in the time-frequency domain by
the wavelet transforms with the Gabor function. Simulation results demonstrate
the effectiveness of our wavelet-based approach. Copyright c°2005 IFAC
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1. INTRODUCTION

The blind source separation (BSS) in the indepen-
dent component analysis (ICA) attracts much of
our attention to its broad applications: crosstalk
removal in multichannel communications, im-
provement over beamforming microphones for au-
dio, and discovery of independent sources in var-
ious biological signals such as EEG, MEG and
so on. The BSS is a signal processing technique
for reconstructing source signals, which are sta-
tistically independent of each other, only by using
the measurements given through a linear mixing
process. Since the mixing process is unknown, the
BSS could be achieved if the estimates of source
signals become independent of each other.

One of the major approaches to the BSS is to
use higher-order statistics. For example, Bell and
Sejnowski (1995) presented the InfoMax princi-
ple, in which application of the InfoMax prin-
ciple to source separation maximizes an output

entropy. This algorithm needs iterative calcula-
tion and requires non-linear optimization. On the
other hand, Molgedey and Schuster (1994) pre-
sented the algorithm using second-order statis-
tics in the form of correlation function. Their
algorithm needs neither higher-order statistics nor
iterative calculations.

When applying a BSS system to a real acoustic
environment such as a number of people talking in
a room, the BSS system performs poorly because
it removes mainly the sounds from the jammer
direction. This is the reason for the difficulty of
BSS in reverberant environments. Such a mixture
is called a “convolutive mixture,” not “instanta-
neous mixture.”

This paper presents a wavelet-based algorithm for
the BSS in convolutive mixing process. First of
all, we transform signals in the time domain into
those in the time-frequency domain by the wavelet
transform (WT) (Mallat, 1998), and make a set



of time series fixed at each frequency. Next, we
apply the BSS algorithms to the time series at
a fixed frequency. Gathering and rearranging the
time series for all the frequencies, and transform-
ing from the time-frequency domain to the time
domain, we can obtain a solution of this type of
BSS problem. However, this is not always true
because of the so-called scaling and permutation
issues. Thus, each signal is independently replaced
at each scale a, and also its magnitude remains
indefinite. For these issues, we try to divide the
spectrogram using an independent signal at each
scale a. Furthermore, we try to solve the per-
mutation issue by using the correlation between
envelopes. Lastly, we demonstrate the superiority
of our wavelet-based approach to the InfoMax and
cross-correlation methods via computer simula-
tion.

2. REVIEW OF BSS PROBLEM

2.1 Original Problem Statement

The source signals are denoted by

s(t) = [s1(t), . . . , sn(t)]
T (1)

In the BSS, there is the assumption that each
component of s(t) is independent of each other.
For defining the statistical independence of s(t),
we use the formula of

p(s) =
nY
i=1

pi(si) (2)

This means that, if any different signals are inde-
pendent of each other, their joint distribution is
represented as product of marginal distributions.
The mixed signals (recorded signals) are denoted
by

x(t) = [x1(t), . . . , xn(t)]
T (3)

In the basic BSS problem, we assume that the
mixed signals are only linear mixtures of sources.
That is, the following formula represents non-
delayed linear mixing.

x(t) = As(t) (4)

where A is an unknown constant matrix denoting
linear channels. Another case is a matrix of FIR
filters, which is used as a model of recording in a
real environment. In this paper, we focus on the
later case.

The task of BSS is to estimate matrix B lead
to independent signals without knowing the in-
formation on the channels A and the probability
distribution of source signals s(t). The separated
signals are represented by

y(t) = Bx(t) (5)

Ideally, we have to find B to be the inverse
of the channels A. We however cannot obtain
the information on the amplitude and the order
of the source signals, where there remains the
indefiniteness of amplitude and permutation. This
fact is represented by the following relation:

BA = PD (6)

where P is a permutation matrix, and D is a
diagonal matrix.

Major approaches to the BSS are based on the
following approaches:

• Equalizing the joint distribution function and
marginal distribution functions of the sepa-
rated signals.

• Zeroing the cross-correlation functions of the
separated signals as much as possible.

We will give an account of these principles.

2.2 InfoMax Method

There are some approaches based on probability
distributions. We review “InfoMax method” in
this section.

The InfoMax method was suggested by Bell and
Sejnowski (1995). The algorithm makes indepen-
dent signals by maximizing the mutual informa-
tion between the mixed and separated signals.

Assuming that the input signals x and the output
ones y of network, the mutual information I(y,x)
between x and y is defined by

I(y,x) = H(y)−H(y|x) (7)

where H(y) is the entropy of outputs y, and
H(y|x) is the conditional entropy of outputs y
with inputs x.

A learning rule is given by computing the gradient
with respects to weight of network B. Here, con-
sidering that H(y|x) does not depend on weight
B, the gradient is written as

∂

∂B
I(y,x) =

∂

∂B
H(y) (8)

Maximizing the mutual information between in-
puts and outputs corresponds with maximizing
the entropy of outputs. Also it leads to minimizing
the mutual information among each component of
outputs, and the output signals become indepen-
dent signals. Assuming that the probability den-
sity functions of inputs and outputs are denoted
as p(x) and p(y) respectively, their relationship is
given by the formula:

p(y) =
p(x)

| J | , J =


∂y1

∂x1
· · · ∂y1

∂xn
...

. . .
...

∂yn
∂x1

· · · ∂yn
∂xn

 (9)



By use of this relationship, the entropy of outputs
H(y) and eq.(8) are rewritten espectively by

H(y) =−
∞Z
−∞

p(y) log p(y)dy = −E[log p(y)]

= E[log | J |]− E[log p(x)] (10)

∂

∂B
I(y,x) =

∂

∂B
H(y)

=
∂

∂B
E[log | J |]− ∂

∂B
E[log p(x)]

(11)

The second term does not depend on the weight
B, so a learning rule of the weight B is lastly
represented as

∆B ∝ ∂

∂B
H(y) =

∂

∂B
E[log | J |] = J−1 · ∂J

∂B
(12)

In this paper, we set y = sgm(u) and u = Bx,
where sgm(u) = 1/(1 + e−u). Thus, eq.(12) is
rewritten by

∂

∂B
H(y) = (BT )−1 + (1− 2y)xT (13)

where 1 is a vector whose components are one.

We can obtain the separating matrix Bt+1 by
updating Bt with respect to each measured data.

Bt+1 = Bt + η∆B (η : learning ratio) (14)

2.3 Cross-correlation Method

There are some algorithms for zeroing cross-
correlations (Murata, et al., 1998). We use the
algorithm that consists of two procedures, “spher-
ing” and “rotation”.

(1) Sphering
The sphering is an operation for orthogonalizing
the source signals in the measuring coordinate.
Let us define a covariance matrix of measurements

R = E
£
x(t)x(t)T

¤
(15)

and define its square root inverse
√
R−1 =

√
Λ−1QT (16)

where Q and Λ are an orthogonal matrix and a
diagonal matrix, respectively, which satisfy

R = QΛQT (17)

and
√
Λ−1 denotes a diagonal matrix, and each

of whose elements is given by the square root

of Λ−1’s elements. By transforming the measure-
ment vector such that

z(t) =
√
R−1x(t) (18)

the covariance matrix of the new vector z(t) is
orthogonalized, i.e.

E
£
z(t)z(t)T

¤
=
√
R−1R

√
R−1

T
= I (19)

where I is the identity matrix.

(2) Rotation
Even after sphering measured signals, there still
remains an ambiguity of rotation. The correct ro-
tation is determined by removing the off-diagonal
elements of the correlation matrix at several time
delay. A possible implementation is to find an
orthogonal matrix C which minimizes

rX
k=1

X
i 6=j

¯̄
(CDkC

T )ij
¯̄2

(20)

where (CDkC
T )ij denotes the (i, j)-element of

matrix CDkC
T and

Dk = E
£
z(t)z(t+ τk)

T
¤

(k = 1, . . . , r) (21)

To solve this approximate simultaneous diagonal-
ization problem, Cardoso and Souloumiac (1996)
proposed a Jacobi-like algorithm. We use their
method in our implementation.

With these two operations, the separation matrix
B is given by

B = C
√
R−1 (22)

3. WAVELET-BASED BSS FOR
CONVOLUTIVE MIXTURE

3.1 Wavelet Transform

The wavelet transform is considered as an exten-
sion of the Fourier transform (FT) so as to over-
come the difficulty in analyzing any local property
of signals. A mother wavelet ψ(t) is a function of
zero average, which is dilated with a scale a, and
translated by a position b such that

ψa,b(t) =
1√
a
ψ(
t− b
a
) (23)

The WT of f(t) at the scale a and position b is
then defined by correlating f(t) with a wavelet
atom of eq.(23):

F (a, b) =

∞Z
−∞
f(t)

1√
a
ψ∗(

t− b
a
)dt (24)

where “ψ∗” denotes the complex conjugate of “ψ”.
Like the windowed FT, the WT can measure the
time-frequency variations of spectral components,
but it has a different time-frequency resolution.



3.2 Filter Characteristic of Wavelet Transform

By applying the Parseval formula, the WT can be
rewritten in the frequency-integral form.

F (a, b) =
1

2π

∞Z
−∞

f̂(ω)ψ̂∗a,b(ω)dω (25)

where “ψ̂” denotes the FT of “ψ”. The wavelet
coefficient F (a, b) thus depends on the value of

f(t) (and f̂(ω)) in the time-frequency domain

where the energy of ψa,b(t) (and ψ̂a,b(ω)) is con-
cenrated. Time varying harmonics are detected
from the scale and position of high amplitude
wavelet coefficients.

According to eq.(25), the WT has a filter charac-

teristic. Correctly speaking, if ψ̂a,b(ω) is localized
in the frequency domain, the WT corresponds to
band-pass filter. For example, when using the Ga-
bor function which has the minimum uncertainty
in the time-frequency domain, a mother wavelet
ψ(t) is written by

ψ(t) = π−
1
4

r
ωp
γ
exp(− ω2

p

2γ2
t2) exp(jωpt) (26)

where γ is a positive constant relating to the
admissibility condition (zero-average condition),
and ωp is the center frequency. Its FT and the
scale-shift transform are written respectively by

ψ̂ = π
1
4

s
2γ

ωp
exp(− γ2

2ω2
p

(ω − ωp)2) (27)

ψ̂a,b = exp(−jbω)
√
aφ̂(aω) = exp(−jbω)√a

·π 1
4

s
2γ

ωp
exp(− γ2

2ω2
p

(aω − ωp)2) (28)

Fig. 1 shows an example of the frequency charac-
teristics of eq.(28). As shown in Fig. 1, ψ̂a,b(ω) is a
band-pass filter showing localized frequency char-
acteristics with a peak at ω = ωp/a. Hereafter, we
will use this Gabor function as ψ(t) (Takada, et
al., 2004).

Fig. 1. Spectrogram of ψ̂a,b (γ = 2π, ωp = 0.1)

3.3 Wavelet-based BSS for Convolutive Mixture

The measured signals based on convolutive mix-
ture are defined by

x(t) = A(t) ∗ s(t) (29)

where ∗ denotes the convolution integral. We now
take the wavelet transform of x(t) with ψ(t).

X(a, b) =

∞Z
−∞

x(t)
1√
a
ψ∗(

t− b
a
)dt (30)

Eq.(30) is computed actually by discretizing in the
following manner:

ω = ωp/a = ω0 × 2−α (α = 0,∆α, 2∆α, . . .)

b= 0,∆T, 2∆T, . . . (31)

where ω0 is the maximum frequency to be consid-
ered.

When using the Gabor function as ψ(t), the
relationship between the measured and source
signals is

X(ω, b) ' Â(ω)S(ω, b) (32)

where Â(ω) is the FT of A(t), and X(ω, b) and
S(ω, b) are the WTs of x(t) and s(t), respectively
(Tabaru, et al., 2005).

By fixing the frequency ω, X(ω, b) is represented
as

Xω(b) = X(ω, b) (33)

Since this equation is only time series of b, we can
apply any non-delay BSS algorithm to convolutive
cases.
After applying the algorithm, we can get the
time series of estimates whose components are
mutually independent for each frequency ω,

Uω(b) = BωXω(b) (34)

Gathering and rearranging the time series for all
the frequencies, and transforming from the time-
frequency domain to the time domain, we can
obtain a solution of this type of blind separation.
However, this is not always true because of the so-
called scaling and permutation issues. Thus, each
signal is independently replaced at each a, and
also its magnitude remains indefinite.

First, to solve the scaling problem, we try to di-
vide the spectrogram using an independent signal
at each scale a.

Vω(b; i) = B
−1
ω

 0
Ui,ω(b)
0

 (35)

where index i denotes the dependence of the spec-
trograms at ω on the i-th independent component



of Uω(b). In order to obtain Vω(b; i), we utilize
Bω and B−1

ω . Then, Vω(b; i) does not have an
ambiguity of magnitude.
The second problem is permutation. Based on
the non-stationarity of the source signals, if the
split band-passed signals Vω(b; i) originate from
the same source signals, it is natural to assume
that they are under the influence of a similar
modulation in amplitude. We define an operator
ε such that

εVω(b; i) =
1

2M

b+MX
t0

s=b−M

nX
j=1

|Vj,ω(t0s; i)| (36)

where M is a positive constant, and Vj,ω(b; i)
denotes the j-th element of Vω(b; i). We define also
its inner product and norm such that

εVω(i) · εVω0(j) =
X
b

εVω(b; i) · εVω0(b; j)(37)

kεVω(i)k=
p
εVω(i) · εVω(i) (38)

We solve the permutation by sorting them. Sort-
ing is determined with the correlation between the
envelopes of band-passed signals.

• Sort ω in order of the weakness of correlation
between independent components in ω. This
is done by sorting in increasing order of

SIM(ω) =
X
i 6=j

εVω(i) · εVω(j)
kεVω(i)k · kεVω(j)k (39)

SIM(ω1) ≤ SIM(ω2) ≤ . . . ≤ SIM(ωN ) (40)
• For ω1, assign Vω1 to Yω1 as it is:

Yω1(b; i) = Vω1(b; i) (i = 1, . . . , n) (41)

• For ωk, find the permutation σ(i) which max-
imizes the correlation between the envelope
of ωk and the aggregated envelope from ω1

through ωk−1. This is achieved by maximiz-
ing

nX
i=1

εVωk
(σ(i)) ·

³Pk−1
j=1 εYωj (i)

´
kεVωk

(σ(i))k · kε
³Pk−1

j=1 εYωj
(i)
´
k
(42)

within all the possible permutation σ of i.
• Assign the appropriate permutation to Yωk

:

Yωk
(b; i) = Vωk

(b;σ(i)) (43)

As a result, we can solve the permutation ambi-
guity and obtain the separated spectrograms:

Y (ω, b; i) = Yω(b; i) (44)

4. SIMULATION RESULTS

4.1 Preliminaries

We used a set of data mixed on a computer, and
applied the BSS algorithm to it. Fig. 2 shows

the source signals recorded on the computer. The
measured signals mixed by the following matrix
are shown in Fig. 3: (see the last reference):

x(t) = A(t) ∗ s(t) =


X
j

a1j(t) ∗ sj(t)X
j

a2j ∗ sj(t)


aij ∗ sj(t) =

∞X
τ=0

aij(τ )sj(t− τ) (45)

where we used actually the following values
(http://www.murata.elec.waseda.ac.jp/murata/
lecture/ice/note/):

A(t) =

µ
a11 a12

a21 a22

¶

a11 = 0.469
a12 = 0, 0.137, 0.103, 0.0824, 0.0549, 0.0347
a21 = 0, 0.177, 0.134, 0.106, 0.0718, 0.0442
a22 = 0.588

We evaluated the performances of the BSS al-
gorithms using the ESR (Error to Signal Ratio)
defined by

ESRi = 10 log10

P
t ei(t)

2P
t si(t)

2

ei(t) = ŝi(t)− si(t) (46)

where index i denotes the order of component.

4.2 Results by Two Methods

Fig. 4 shows the results by the InfoMax method,
and Fig. 5 does the results by the method based
on zeroing of the cross-correlations.

Fig. 2. Source signals Fig. 3. Mixed signals

Fig. 4. InfoMax method Fig. 5. Method for zeroing
of cross-correlations



As compared with the instantaneous mixture case,
the ESR for the convolutive mixture case deterio-
rated only by 2[dB] for the InfoMax method, while
it deteriorated seriously for the cross-correlation
method. Next, we considered the measurement
noise case:

y(t) = A(t) ∗ s(t) + n(t) (47)

where n(t) denotes the white Gaussian with zero-
mean. Then, the ESR when applying the wavelet-
based approach deteriorated very little in low
NSR (Noise to Signal Ratio). This is due to de-
noising by a set of band-pass filters based on
Gabor wavelet (Takada, et al., 2004). In addition,
the ESR when applying the FT with do-nothing
window instead of the WT deteriorated seriously
even in the noise-free case.

Table 1. ESR comparison of two methods

InfoMax Cross-Correlations

ESR1[dB] -10.90 -8.95
ESR2[dB] -11.20 -7.34

5. CONCLUSIONS

This paper considered an application of the WT to
the BSS problem for the convolutive mixture case.
Generally speaking, the advantage of the WT is
the resolution in the high-frequency range. How-
ever, the proposed algorithm may not necessarily
yields remarkable results in practice.

This is because that

• There is a small number of sound components
in the high-frequency range. Power of sound
signals is generally concentrated in the low-
frequency range, while it is not in the high-
frequency range. Since the BSS algorithm
is performed at each frequency, it might be
difficult to separate the signals with small
components existing in the high-frequency
range.

• There might be a local-minimum problem
due to the simplest optimization technique
as in eq.(14).

When using the WT, we can set the frequency
ranges according to the scale a. Therefore, we
can apply the algorithm to a wide class of ob-
jects with every frequency characteristic. If not
knowing any frequency characteristics of signals
to be separated in advance, we can use the WT
only for prefiltering as in 3.2. After examining the
signals by the WT and obtaining the frequency
information on the signals, we could perform the
BSS algorithm only for a specified frequency band.

There still remain the following subjects:

• Hesse and James (2004) have recently pro-
posed a method of BSS based on the dis-
crete wavelet transform (DWT) and wavelet
packet (WPT). We should compare our
method with the above method from the
viewpoint of separation accuracy.

• In connection with the above, the contin-
uous wavelet transform (CWT) using the
Gabor function is computationally intensive
rahter than the DWT. Thus, the pseudo-
CWT approach could be efficient for a com-
pact wavelet representation of signals (Shi-
nohara, 2004).
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