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Abstract: In this study, integrated optimum design of structures and control systems is 
studied by using reduced order models. The structures and controllers are optimized 
simultaneously and successively. Since the degree-of-freedom (DOF) for structures is 
very large in practice, model order reduction techniques have to be employed at every 
controller design iteration during optimization in integrated optimum design approaches, 
that increase the CPU time and involves modeling errors. In this study, Subspace Based 
Identification (SBI) method is used as a  model order reduction technique in frequency 
domain. It is shown that simultaneous optimization of structures and controllers by using 
LQR formulations can be achieved by an equivalent decoupled optimization problem 
where structures are optimized by shaping the structural singular values and following 
any control law of interest can be designed. Decoupled optimization of structures and 
controllers has certain advantages, especially for structures having large DOF.  
Copyright © 2005 IFAC 
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1. INTRODUCTION 
 

In this study, linear quadratic regulator (LQR) 
formulation is applied to the integrated optimum 
design of structures and control systems problem. If 
the degree-of-freedom (DOF) for structures were 
very large, model order reduction techniques would 
have to be employed at every LQR design iteration 
during optimization to be able to design a control law 
in integrated optimum design approaches, that 
increases the CPU time and involves modeling 
errors. It is shown that LQR formulations can be 
approximated by a decoupled optimization problem 
for a structure and its controller in which the 
structure is optimized by shaping the structural 
singular values and then the controller can be 
designed in any desired way; this approach has 
advantages such as yielding optimized structures 

faster, allowing decoupled design of the structure and 
its controller, eliminating the modeling errors due to 
employment of model order reduction techniques to 
design controllers, and being feasible for structures 
having large DOF. The relations between LQR 
formulations and total strain and kinetic energy of a 
structure are derived, which has also links with a 
structural singular value shaping problem. The 
outline of this study is as follows: Subspace-Based  
Identification Method is defined in Section 2. LQR 
problem is defined in Section 3. Following, the 
relations for optimum design of controlled structures 
are presented in Section 4. Numerical examples are 
given in Section 5 and conclusions are drawn in 
Section 6.  
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2. SUBSPACE-BASED IDENTIFICATION 
METHOD 

  
 SBI method estimate the parameters of state space 

representation of the transfer function. In this study, 
parameters of discrete time state space form are 
estimated and after that, by using the parameter, 
frequency and step response of discrete system are 
obtained. To do this, in algorithm, the row size for 
the square Hankel matrix is suggested to be at most 
half of the number of sampled continuous time 
frequency response data and entered by the user. 
Also, the incremental step size for the model order 
and maximum model order are entered by the user 
(e.g., McKelley  and Akçay , 1996). 

 
 

2.1. Problem Formulation 
 
  Assume that G is a stable, multi-input, multi-output 

(MIMO), linear time-invariant, discrete-time system 
with input-output properties characterized by the 
impulse response coefficients gk through the equation 
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also assume that the system is of finite order n and 
can thus be described by a state-space model 

                        ( ) ( ) (
)()()(

1
tDutCxty

tButAxtx
+=

+=+ )                       (2) 

 where R∈)(ty p, R∈)(tu m  and R( )∈tx n. The 
state space model (2) has the impulse response 
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 The frequency response of (2) is calculated as  
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 which for the state space model (2) can be written  
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 In (4), 1−=j  is the imaginary unit. 
 
 

2.2. Uniformly Spaced Data 
 
 This section is devoted to the case of uniformly 

spaced data. Assume that M + 1 frequency response 
data Gk on a set of uniformly spaced frequencies 

                           
M
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 are given. If the impulse response coefficients (3) are 
given, well-known realization algorithms can be used 
to obtain a state space realization. The algorithm 
presented in this section is closely related to these 
results, but uses the coefficients of the inverse 
discrete Fourier transform (IDFT) from samples of 
the frequency response function. Since G is a transfer 
with a real valued impulse response (1), frequency 
response data on [ ]π,0  can be extended to 
[ ]ππ 2,  by taking the complex conjugate of the 

given data Gk which forms the first step of the 
identification algorithm. 

 Algorithm: 
1) Extend the transfer function samples to the full 
unit circle 
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 where ( )*.  denotes complex conjugate. 
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3) Let the block Hankel matrix Ĥ  be defined as 
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 With number of block rows q > n and block columns 
r ≥  n. The dimension of  Ĥ  is bounded by q + r ≤  
2M. 

 4) Calculate the singular value decomposition (SVD) 
of the Hankel matrix 

TVUH ˆˆˆˆ Σ= . 
 5) Determine the system order n by inspecting the 

singular values and partition the SVD such that 

contains the n largest singular values sΣ̂
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 6) Determine the system matrices Â  and C  as  ˆ
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                    ( ) ( )[ ]pxpqpqIJ 111 0 −−=                     (13) 

                    ( ) ( )[ ]pqpxpq IJ 112 0 −−=                     (14) 

                       ( )[ ]pqpxpIJ 13 0 −=                       (15) 
 and Ii  denotes the i x i identify matrix, 0i x j the i x  j 

zero matrix, and ( ) TT XXXX 1† −
=  the Moore-

Penrose pseudoinverse of the full column rank matrix 
X. 

 7) Solve a least squares problem to determine B̂  and 
 D̂
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xX  denotes the Frobenius 

norm. 
 8) The estimated transfer function is defined as  
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 Notice that B and D appear linearly in the transfer 
function for fixed A and C. Hence, the optimization 
(16) has an analytical solution. 

 
 



3. LQR DESIGN METHOD 
 
Let a linear time-invariant structure be described by 
the following standard form (Zhou, Doyle and 
Glover, 1996). 
                             uBAxx 2+=& ,                         (18) 

0)0( xx =  given but arbitrary  

                             uDxCz 121 +=                         (19) 
Then, standard LQR design problem is defined by 
Problem definition: Find an optimal control law 

 such that the performance criterion [ )∞∈ ,02Lu 2

2
z  

 
 is minimized (Anderson  and Moore, 1990). On the 

other hand, extended LQR problem is determined as 
follow: 
Problem definition: Find an optimal control law 

 such that the system is internally 

stable, i.e.,  and the following 
performance criterion minimized (Anderson and 
Moore, 1990) 
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where  and  are the penalty 
matrices for the states x and inputs u, respectively. 
Optimal gain matrix K is calculated such that the 
state-feedback law 

0≥= TQQ 0>= TRR

Kxu −=  minimizes the cost 
function J.  

 
 

4. OPTIMUM DESIGN OF CONTROLLED 
STRUCTURES 

 
Structural and controller parameters should be 
optimized simultaneously or successively by using 
iterative optimization algorithms to minimize the cost 
function J in (20) where the penalty matrices Q and R 
are given a priori by the designer.  
 
 
4.1 Successive Optimization of Structures and LQR 
Design Problem 
 
It is shown below that integrated optimum design of 
a structure and LQR can be decoupled and cast as a 
structural singular value shaping problem. Consider 
the following LQR cost function for the infinite 
horizon problem (Anderson and Moore, 1990) 
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where X is the design parameter vector. On the other 
hand, suppose that finite element methods are 
employed to obtain structural equations and 
semidiscrete equations of the structure are given by 
                          fKzzCzM =++ &&&                      (22) 
Note that the equations of the structure given by (22) 
can easily be cast into the state space form (1) by 
defining the state vector as follows 
                                    [ ]zzx &=                           (23) 

Since, the strain energy U and kinetic energy T of the 
structure can be written as follows (Haug and Choi, 
1986). 
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Then, total energy E of the system is given by 
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where  is the zero matrix of size n by n, and n is 
the degree-of-freedom (DOF) of the associated 
structure. Note that the second term in (22) is the 
damping term and is responsible for dissipated 
energy. Lets assume that the state penalty matrix Q in 
(21) is equal to the following 
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where the corresponding states of the structure are 
defined by (23); subsequently, LQR formulation 
means that minimization of total structural energy, 
because minimization of J defined by (21) requires 
minimization of each term in (21) and the first term 
yields total structural energy for this definition of Q. 
In general, for an arbitrary Q matrix, a state 
weighting matrix Ws can be found (Horn and 
Johnson, 1995) such that 
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that corresponds to a structure whose states are 
defined by 
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Since the state penalty matrix Q is usually chosen as 
a diagonal matrix, the weighting matrix  can be 
chosen as follows 
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where the columns of matrices  and  are the 
eigenvectors of matrices K and M, respectively. If the 
matrix Q is not chosen to be diagonal, then the matrix 
equation (28) should be solved for for the given 
Q matrix. In sum, for an arbitrary state penalty matrix 
Q, minimization of J defined by (21) corresponds to 
minimization of total energy of the structure whose 
states are defined by (29); that is, total structural 
energy is minimized in a weighted sense where states 
are weighted as (29).  

kX mX
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Meanwhile, due to (Postlethwaite and Edmunds, 
1981), for a deterministic aperiodic input vector u(t), 
the energy-density ratio is bounded by the squares of 



the maximum and minimum singular values as 
follows 
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where y(t) is the output vector in response to the 
input vector u(t), and )(ˆ ωjy  and )(ˆ ωju  are 
respectively the Fourier transforms of y(t) and u(t) 
defined by  
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Hence, for an arbitrary penalty matrix Q, 
minimization of total structural is equivalent to 
minimization of 1σ and nσ  of the structure whose 
states are defined by (29).  
 
In parallel to the above conclusion, the objective 
functions used for decoupled optimization of 
structures are related to total structural energy as 
well. Recall that G and P denote transfer matrices for 
disturbance to output and reference input to output, 
respectively. Then, minimization of ( ))(1 ωσ jG  in 
decoupled structural optimization problems is 
equivalent to minimization of total structural energy 
Ed in response to the disturbance input d. Similarly, 
maximization of ( )(1 )ωσ jP  and ( )( )ωσ jPn  in 
decoupled structural optimization problems is 
equivalent to maximization of total structural energy 
Eu in response to the control input u. Consequently, 
(45) is equivalent to the following energy ratio 
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Now, the second term in (21) will be studied. Let u~  
denote the magnitude of input vector (i.e., 

tSinutuu ω~)( == ). Then, the following holds for 
a structure whose input-output transfer matrix is 

 (Postlethwaite and Edmunds, 1981) )(sT
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where )(ωσ i  is the ith singular value of )( ωjT  

(namely, structural singular values), )(ωSMSVO  
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SMSVI  denotes the “sum of the mean-squared 
values of the inputs over one period” given by 
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where a superposed asterisk denotes conjugated 
transpose and over line denotes conjugation. 
Assuming that the control input penalty matrix R is 
decomposed into the following form 
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which means that  of the system for the 
weighted input given by (41) is equal to the last term. 
Since both (31) and (43) involve only 

SMSVI

1σ  and nσ , 
selective eigenvalue solvers can be used that reduces 
the computational cost of the associated optimization 
problem (Muğan A, 2002). 
 
In brief, decoupled LQR formulation for optimum 
design of structures and controllers are equivalent to 
shaping of structural singular values in frequency 
domain.  
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 It is noteworthy that while  is the function 
of the input u , structural singular values 

SMSVI
1σ  and 

nσ  depend only on structural parameters, and 

 is the function of both input u and 
structural parameters. 
SMSVO

 
Note that the first and second terms in the objective 
function (21) are respectively equivalent to 
conflicting structural singular value shaping 
problems expressed by (31) and (43). In fact, there is 
a trade off in the objective function J defined by (21) 
due to the contributions of the first and second terms, 
which is balanced by using the penalty matrices Q 
and R. Subsequently, The following objective 
function is used in numerical solutions 
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which is a decoupled optimization problem for the 
structure. The coefficients A and B can be selected 
independently to penalize total structural energy and 
SMSVI, respectively. Accordingly, Thus, 
minimization of J means that minimization of SMSVI 
for the weighted input. 
 
 

5. NUMERICAL EXAMPLES 
 
In this study, a truss system having 46 DOF is 
reduced to 7 DOF by using FEM and SBI method. 
Then, for the truss system and its controller 
described, the associated simultaneous and 
successive optimum design problems are solved by 
using LQR formulations. The reduced order model is 
obtained by the SBI method, whose frequency )()()()(

2
1)( ** ωωωωω jTjTjTjT +=

     



response is given in Figure 2. The truss system  
formed of seven truss elements is shown in Figure 1 
and structural parameters are as follows: elasticity 
modulus is , truss element 
lengths are  m, material density is 

. Note that unlike robust control 
problems, existence of disturbance load is not 
important in designing LQR; hence, it is ignored. 
Sequential Quadratic Programming method is 
employed for optimization, and the optimization 
problems are solved as a constrained optimization 
problem in which the maximum stress 

29 /101.2 mNxE =
1=l

3/7850 mkg=ρ

max)( ijτ  in 
the truss system is bounded by a priori safety stress 

safetyτ = 6000 N/cm2
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Fig. 1. Truss system. 
 
for St37 steel material for safety  factor is chosen to 
be four. Design parameters for the truss system are 
the cross-sectional areas hi of truss elements whose 
lower and upper bounds are respectively set to be  

 and  in the 
optimization algorithm. Mass of the structure is 
lumped at nodes. Rayleigh damping of the form 
C=αK is assumed in numerical simulations where 
α=0.01. In order to find the global minimum, initial 
conditions for the structural parameters are changed 
during numerical solutions. 

24104.1 mxLB −= 241012 mxUB −=

 
State feedback matrix K for the control input u=-Kx 
computed by LQR formulations. For the state penalty 
matrix Q and control penalty matrix R in (21), 
identity matrices are selected in all design studies for 
simplicity. Arbitrary Q and R matrices could also be 
selected as elaborated in Section 3.1.  
For successive optimization, the following cost 
function is minimized by choosing A=0 and B=1 in 
(44)  
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that yields almost the same results obtained by 
simultaneous optimization of structures and 
controllers. Note that since ( )( )ωσ jPn  is very small 
(in the order of 10-5) and )( )( ωσ jP1  is in the order of 
102, the term ( )( )ωσ jPn/1  is dominant and 
subsequently the cost function of )( )( ωσ jPn/1  yields 
the same results as those of (45). The values of the 
cost function J in response to an impulse, the 
corresponding H2 norms of the transfer matrix and 
values of cost function (45) are given in Figures 3 
and 4 for respectively simultaneous and successive 
optimum design of the truss system and LQR as the 
total cross-sectional area of bars varies in the solution 

sets. It is the designer’s task to choose the best 
solution among the solution.  
 
Observe that the optimum solution obtained by 
successive optimization (e.g., see Table 1) is better 
than that of simultaneous optimization (e.g., see 
Table 2) approach.  

 
 

6. CONCLUSION 
 
It is pointed out that using LQR in simultaneous 
optimization problems has certain disadvantages such 
as necessity of employing model order reduction 
techniques for the structure at every design iteration 
that is a slow process involving significant 
approximation errors especially for structures having 
large DOF. It is noteworthy that optimum design of 
controlled structures is a multi-objective optimization 
problem. Simultaneous optimization of a structure 
and its controller can be approximated by a 
decoupled (successive) optimum design approach as 
follows: beforehand, the structure is optimized by 
shaping the structural singular values, then the 
controller can be designed by any method of interest. 
The objective functions for structural optimization in 
successive optimization approach are expressed in 
terms of structural singular values. Computational 
cost of the associated singular value shaping problem 
is very low even though the DOF of FEM model is 
large, since it is only necessary to compute the 
largest and smallest singular values that can be 
computed by using selective eigenvalue solvers and 
the other singular values are not needed. It is 
observed that solutions of simultaneous LQR 
optimization problem can be obtained by the 
successive optimization approach as well. 
 
Model order reduction techniques should be 
employed at every design iteration for simultaneous 
optimization approach in order to design LQR laws; 
In successive optimization approach, the controller is 
designed after the structure is optimized; hence, it 
needs much less CPU times than simultaneous 
optimization approach. In the case that no model 
order reduction technique is employed, overall CPU 
times of successive optimization approach lower than 
those simultaneous optimization approach.  
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Fig. 2. Frequency response of the reduced order   

model between 0 to 2000 rad/sec. 
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Fig. 4. Convergence for successive optimum design 

of the truss system by using the objective function 
(45). 

 
 
 

Fig. 3: Convergence for simultaneous optimum     
design of the truss system by using the objective 
function (45). 

 
Table 1: Some solutions obtained by simultaneous LQR optimization problem. 

  
Solution 
number 

 
Optimum cross sectional areas (mm2) 

Total area 
 (mm2) 

 
J 

nσσ
11

1

+  CPU Time 
in sec. 

1 hoptimal = [1.52, 1.4, 1.88, 1.84, 1.4, 1.4, 1.4] 10.84 89.79 23380 4.96 

2 hoptimal = [3.99, 4.99, 2.23, 1.4, 4.56, 4.65, 4.91] 26.77 89.84 53470 9.42 

3 hoptimal = [8.08, 10.5, 6.23, 1.4, 10.5, 10.53, 10.37] 57.56 90.37 109620 14.82 
 

Table 2: Some solutions obtained by successive LQR optimization approach.
           
Solution 
number 

 
Optimum cross sectional areas (mm2) 

Total area 
 (mm2) 

 
J 

nσσ
11

1

+  CPU Time 
in sec. 

1   hoptimal = [1.41, 1.41, 1.82, 1.4, 1.4, 1.4, 1.4] 10.25 89.67 20990 18.03 

2   hoptimal = [1.74, 1.69, 1.81, 1.4, 1.4, 1.74, 1.4] 11.20 89.50 20990 28.45 

3 hoptimal = [1.88, 1.43, 1.82, 1.4, 1.4, 1.4, 1.4] 10.73 89.69 20990 67.51 
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