

TOOLS AND TECHNOLOGIES FOR DESIGNING CONTROL SYSTEMS
USING PROGRAMMABLE LOGIC DEVICES

Adam MILIK, Mariusz DYKIEREK

Aldec-ADT, Sp. z o.o.,
Widok 23, 40-118 Katowice, Poland

adamm@aldec.com.pl, mariuszd@aldec.com.pl

Abstract: The paper presents modern programmable logic devices and design methodologies
with appropriate tools reference. It briefly shows enhancements introduced in the
architecture of FPGA and its influence on circuit capabilities. The paper presents also the
design process from idea to functional implementation. It discusses algorithmic and
functional approaches to design. Abstraction level and transaction mechanisms are shown as
a method of hiding details without compromising design functionality. Finally tools for
different design approaches and design environment requirements are presented.
Copyright © 2005 IFAC

Keywords: Programmable Logic Device; PLD; Field Programmable Gate Array; FPGA;
Complex Programmable Logic Device; CPLD; VHDL; Verilog®;

1. INTRODUCTION

Today's Programmable Logic Devices are no longer
similar to their ancestors from early '80s. Changes in
the manufacturing technology and the feature sets
offered by the leading CPLD and FPGA vendors
have been more revolutionary than evolutionary,
especially over the past few years. Deep submicron
processes, reaching 90nm (and the cutting-edge
65nm announced), ensure enormous capacity of the
high speed logic fabric available to users. Besides the
growing logic density, contemporary FPGAs offer
specialized Digital Signal Processing units like
Multipliers and Multiply-Accumulate circuits
(MACs). With the introduction of industry standard
RISC processor hard macros like PowerPCTM 405 in
Xilinx’s Virtex II Pro family and ARMTM 922T in
Altera’s Excalibur devices, FPGAs enter the world of
System-On-Chip (SOC) designs where software co-
exists, coordinates and cooperates with the hardware
on a single silicon die. Both Altera® and Xilinx® also
offer soft-core processors (mapped into
programmable resources of FPGAs) that can be
custom-tailored to the needs, requirements and

capacity limitations. Configurable, high speed, built-
in serial transceivers complying with several
protocols simplify process of data transmission
between devices and subsystems.
The flexibility of programmable devices is yet
another advantage that should not be underestimated.
The hardware implemented in a PLD can be
upgraded while it is already in the end-user product.
Static reconfiguration is a great advantage that allows
for functionality update and bug removal without
physical modification of the circuit structure.
Moreover, the process of structure modification can
be performed dynamically, while the system is
operating. A dynamic reconfiguration allows for a
rational hardware utilization for the appropriate task.
Only required processing components are used.
Dynamic reconfiguration seems to be the most
challenging area in hardware-software co-design
(Hauck, 1999, Hazel et.al. 2002).
The features mentioned above alongside
continuously dropping prices of programmable chips
open the doors for FPGAs and CPLDs in applications
that were reserved for ASICs in the past.
To empower the designers with the ability to
efficiently use the capabilities of modern devices,
new techniques and tools for design and verification

are necessary. Some of these will be presented in the
following sections of this paper.

2. FPGA HARDWARE PLATFORM

FPGAs available commercially differ depending on
the manufacturer and the family of devices
(Xilinx, 2003, Altera). There are common
programmable resources typical for a general
architecture of FPGAs like look-up tables, flip-flops
and programmable routing resources (Fig. 1). In this
section examples of resources that provide
advantages to designers are shown. Those additional
functional blocks allow for better logic utilization,
increased performance and improved board level
interconnection system.

2.1 Functional extensions and peripheral blocks

Among typical logic resources appear additional
specific blocks required for a typical digital design.
The need of implementing such functionality was
mainly caused by their inefficient implementation by
general purpose logic resources.

Memories
Internal memories offer new approach to designs
based on of FPGA devices. Implementing small
memories with typical logic resources inside FPGAs
was very expensive. On the other hand adding
external memory requires additional I/O pins and
reduces maximal operating frequency. Maximal
capacity of an on-chip memory is 9 Mbits for Altera
Startix FPGA family (Altera).
Implemented memory can be arranged in different
functional configurations like single port, dual-port
and bidirectional dual port. Placing RAM cells in the
configuration stream allows to pre-initialize memory
contents during the configuration process. In this
case memory can be used as ROM or initialized
RAM (reduces hardware overhead for memory
initialization). All those benefits allow FIFOs,
CAMs, addressable register blocks or functional
blocks like multipliers to be integrated in FPGA.

Arithmetic extension circuits
Arithmetic operation are common for many designs
especially for DSP. The most problematic and
resource consuming operation is multiplication.
There are several different algorithms of sequential

multiplication but the fastest multipliers are
combinatorial. Virtex-II family FPGAs offers up to
168 combinatorial multipliers in the largest chip.
Multipliers operate on 18 bit words in 2’s
complement notation (Xilinx, 2003). Much more
complex block can be found in the Stratix family
from Altera, where typical MAC circuits (register
multiplier adder/subtractor) are implemented.
Argument length can have up to 36 bit. Several
multiplier configurations are possible – from one 36-
bit to four 18-bit. The configuration can be changed
dynamically. Altera calls those blocks DSP as they
are particularly useful for signal processing.

Fig. 1. Modern FPGA Architecture (Spartan 3)

Hardware processor core
Among dedicated logic resources some families of
FPGAs incorporate embedded microprocessors on
the same silicon die. Such a solution promotes a
typical FPGA device to a fully programmable system
level solution. Altera’s Excalibur is equipped with
ARM 32-bit RISC microprocessor from series 9
(Altera). Additional peripherals devices for processor
are also available. Power PC is a microprocessor that
powers a competitive solution from Xilinx. Up to
four Power PC cores are integrated in the Virtex-II
Pro family (Xilinx, 2003).

Clock deskew circuitry
Clock distribution in a large digital synchronous
circuit encounters the problem of the skew effect. In
the delay compensation circuit PLL (Phase Locked
Loop) or DLL (Delay Locked Loop) units are used.
Those circuits can also be used for frequency
synthesis purposes and for clock correction (duty
factor and phase correction).

Universal IO Blocks
FPGAs offer a large number of user IO pins that
reaches to about 1000. Presented features show that
complex systems can be implemented in one or
several FPGA chips. There is a need for
communication with different peripheral devices and
memories. This requirements forces implementing
flexible, multi-standard input-output blocks. Those
blocks allow for transferring signals in both
directions in different logic standards. Several logic
standards (LVTTL, PCI, GTL, LVCMOS,…) are
supported by the programmable reference voltage.
Differential signal transmissions and double data
rates (DDR) are also supported through appropriate
receivers. For proper signal conditioning digitally
configurable impedance (DCI) is used that allows
impedance matching of transmission lines and
reducing signal reflection. Impedance matching
system allows impedance control of both output and
input by applying serial or parallel resistance,
respectively. IO flexibility reduces or almost removes
needs for additional external passive or active signal
matching and conditioning components.

Reconfiguration
In general, each FPGA device must be programmed
before use. Depending on the configuration storage

this process can be executed once in the life time
(OTP) or the device can be reprogrammed. Devices
based on SRAM configuration memory must be
configured each time after power-on. Commands to
reconfigure circuit and load new configuration data
can also be issued during operation. The ability to
change configuration data has an important
implication – it allows to update the functionality of
the circuit without changing its physical structure.
When the configuration circuitry supports partial
modification of configuration memory contents, it is
possible to create a run-time re-configurable circuit.
Circuits, similarly to computers with exchangeable
programs, can be modified according to the current
requirements. This allows to reduce the logic
capacity of the circuit by providing only a subset of
the functionality – such that is required to execute the
current task (which can be a small subset of all
executed tasks).

3. DESIGN PROCESS

Contemporary designs are based on the system level
paradigm (Ferrari A. and A. Sangiovanni-Vincentelli,
1999, Müller W et.al. 2003). System level design
techniques are based on ready system components
with a custom design part. The unmodifiable part of
the system usually consists of a microprocessor
system with a basic set of peripheral units used to
solve a given problem (automotive, industrial,
telecommunication, household applications etc.).
Specific features of the designed product are located
in the custom part of hardware and of course in the
dedicated software. The custom part of the hardware
can be implemented as a mask programmed part of
the chip or as an FPGA configured specifically for
design needs. A very important factor in the system
level design is performance. The performance
problem is to a large extent dependant on placing a
boundary between the hardware and the software part
of design. This boundary is constrained by several
factors like power consumption, FPGA part size,
system performance, etc. In order to achieve best
possible results, the partitioning process should be
performed for different combinations of possible
solutions (Fig. 2). The presented system solution

requires a new design approach that allows a
coherent design and verification of the product
during each stage of the development.

Formal verification

Problem decomposition

Design partitioning for
Hardware and Software

System verification and
performance check

Algorithm modification
and optimization

System Algorithm
description

Decomposition strategy
change

Fig. 2. System level design flow

In the past concept of the design was divided into
several steps that were unlinked together. Refining
the design from one abstraction level to another
requires an extremely high effort from the design
team. Models developed for a given stage of
abstraction can hardly be used in other abstraction
levels. The design starts from the concept modelled
with the use of high level languages (C, Fortran,
Pascal,…) or tools (Matlab, Mathcad,…). This level
of abstraction allows to obtain algorithmic
verification in early stages of the design. Verification
in the domain of algorithm only assures the designer
that a proper algorithm was chosen. In fact at this
stage it is difficult to estimate the performance of the
system while the performance can be impacted by
several factors that are design dependant. An
extremely important step after algorithmic
verification is the design partitioning. An improper
design partitioning can lead to inefficient
implementation that hardly meets design constraints.
Usually, during partitioning there are several factors
that are taken into account. In general algorithms
implemented in hardware are better than software
competitors. Software implementation and debug
process is much easier and less time consuming than
for hardware. A properly partitioned design should
have flexible hardware structures that allow to assure
required performance with the help of the software
platform. When this is combined with a system level
approach, it is obvious that a specific approach is
required for design development.
As already mentioned, high level programming
languages are used for algorithmic verification
purposes. C language is extremely popular in the
world of programmers, embedded system designers
and hardware engineers. C language can be treated as
a universal platform for program implementation and
design verification. Universal also means
unconstrained. In general, C language has not
implemented any mechanisms to model system
behaviour contrary to HDL languages (concurrency,
signal resolution, events). On the other hand, a lot of
high level programming language structures are
inherited by HDL languages. The gap between
general programming languages and system design
tool requirements can bridged by specific libraries
that introduce system and hardware behaviour
implemented directly in C++ with specific classes

System Design

Hardware Design & Debug

Software Design

Prototyping

Implement.

Coding

Debug

System level
Co-simulation

Fig. 3. Integrated design flow

and templates (Gajski 2000). System design flow
from idea to implementation with hardware and
software paths is shown in (Fig. 3).

4. MODERN DESIGN METHODOLOGIES

As it was already mentioned, design starts from an
algorithmic description or general requirements
provided as spoken rules. Before an algorithm and a
set of requirements can be transformed into a fully
functional device, the designing process must be
completed. This assumes a hierarchical approach to
problem solving. There are two basic approaches to
hierarchical design: top-down and bottom-up. In real
the design process is usually started from the top-
down methodology. When the design description is
detailed enough, the methodology is reversed and
goes from the bottom up by assembling primitive
components into functionally complete unit.
At the early beginning designers focus on general
requirements imposed on the product. Each feature or
constraint is expanded and reflects part or the whole
design. The number of details on each level of
abstraction must be reduced to the perception level of
a human being. Reducing the number of details
allows for a better design development management
and maintenance. The approach to the design can be
either algorithmic or functional.

4.1 Algorithmic high level approach

In the area of automatic control and DSP a typical
design approach is based on mathematical
algorithms. In the domain of mathematical
algorithms Matlab and Simulink environments
become very popular. This mathematical
environment is suitable to solve different problems
from different technical branches from signal
processing to process control (Sigmon K and
T.A.Davis 2001). This tool allows to solve
algorithmic problems in discrete and continuous time
domain. It is also equipped with a comprehensive
analysis tool set. Simulink block diagram allows to
construct hierarchical models of the explored
problem. Nowadays it is not enough to have an
algorithm. The complexity of processing is so high
that some support during algorithm implementation
and final verification is also required.

4.2 Functional description - Transaction level
modelling

The traditional modelling method, based on RTL, is
inadequate to designs with the complexity of system
level (Ferrari A. and A. Sangiovanni-Vincentelli,
1999). The ideal method must be very general and
suitable for modelling whole systems with hardware
and software. At an early stage of the design, the
method should enable general algorithmic
verification with the possibility of step-by-step
design refinement. This method can easily be derived
from the RTL technique (De Micheli 1994 Devadas

et.al. 1994). In order to reduce the number of details
in the design, it is necessary to introduce abstract
objects called transactions. Reducing and
encapsulating details of design into transactions
allows the designer to get a quick perception of the
whole design in terms of its functionality.
Transaction-level modelling is a general approach to
a hierarchical design methodology. This method has
an unconstrained transaction form that can describe
general device behaviour, software activity and
hardware behaviour. Simplicity of the transaction
also reduces computation power required for system
verification.
Transaction, in the world of system level design, can
be defined as interaction of two components. A
transaction acts as a general container used for
passing or exchanging information or data sets. It is
independent from data protocols, bus size or
exchange protocols, which allows the designer to
reduce unneeded details by hiding them behind a
transaction (Fig. 4). This approach allows engineers
to concentrate on real design problems for a given
abstraction level while other problems are hidden
out of sight. It also allows the reuse of test patterns
prepared during the early stages of the design to
verify system functionality.
Transaction-level modelling starts with describing
general system requirements with high-level
transactions. Functional models are evaluated in
timeless space or time can be represented by
transaction passing. A network interface that
processes data can be considered as an example. At
an early stage of the design process, a set of
commands and appropriate activities are described.
At this level the only important thing to implement is
command execution. Command passing is generally
represented by transactions. The internal structure of
a command, data frame or transmission protocol, are
beyond the scope of this level. When a satisfactory
level of behaviour is obtained, refinement can be
started. At this stage, a greater number of details can
appear. Transactions that represent whole data
containers can be represented by appropriate data
fields, or data frames, that allow for design
refinement by splitting functionality of top-level
modules into data processing units and execution
units. During design refinement, the functional part
that is responsible for delivering external transactions

Transactor
Abstraction level converter

SEND FRAME
Transaction

Module
Transaction Source/Target

RECEIVE
FRAME

Transaction

Transaction based model

Timed hardware domain
Fig. 4. Transaction level concept

operates as a testbench. This testbench can be used
during the entire lifetime of the design to verify
different abstraction levels with the same transaction.

5. TOOLS FOR MODERN DESIGNS

Presented design methodologies require appropriate
tools integration. Design process requires a skilled
design team and a good toolset for design
development. Design process operates on different
levels of abstraction for completing design tasks.
When the system level approach is used, different
components described with all possible methods can
be encountered.

5.1 Algorithmic approach tools

In the area of algorithms Matlab and Simulink tools
are extremely popular. This package is an open
environment that allows different developers to
deliver their own solutions. The Matlab is typically
used as a standardized mathematical and algorithmic
verification environment (Fig. 5). Simulink model or
Matlab equation or algorithm is only an intermediate
state of design. This stage assures only about
correctness of the selected algorithm or implemented
data processing. From the implementation point of
view additional tools are required for automatic code
or hardware generation. This often requires
transformation of floating point to fixed point
arithmetic and generating the appropriate data flow
controller. AccelChip delivers a tool that is able to
convert mathematical description into functional
hardware. This tool allows for calculating the number
length for proper calculation resolution and converts
mathematic formulas into a hardware structure.
Xilinx System generator is another solution
embedded into the Matlab environment that allows
designing signal processing systems directly in
Simulink with the use of delivered blocks. Those
blocks are finally synthesized into a circuit
description. Often there is a need for verifying the
existing solution in a complex mathematic
environment. Co-simulation with mathematical
environment is possible in Aldec simulators Active-
HDL and Riviera.

5.2 SystemC programming language extension

The C/C++ language is very often used at the early
stages of the design as a modelling environment. In
its concept it is a programming language and it is not
suitable for modelling concurrent process typical for
hardware and hardware-software systems. Adding to
a standard language a specific library of classes that
introduces concurrency mechanisms and data flow
with the use of transactions allows to extend possible
areas of usage of the C++ programming language.
Nowadays C++ can be treated as a universal
language. SystemC has introduced a cycle based
simulation process and several benefits that were
available only in HDL simulators (Synopsys, 2002).
Combining a typical programming language with a
cycle based simulation capable environment gives an
opportunity for integrating the description of
different levels of abstraction and belonging to
different domains (hardware / software). The
transaction based methodology presented in the paper
allows for design development and refinement
according to simple rules from idea to
implementation-ready prototype. Design process is
carried out with a C++ compiler. The main
disadvantage of the C++ environment is the lack of
proper visualization and diagnostic tools. It should be
pointed out that the development of C code is not the
primary task in SystemC environment but in system
level design. One of simulation environments
proposed for SystemC system level design is
CoCentric from Synopsys (Synopsys, 2003). A
synthesizable subset of classes can be automatically
synthesized by Celoxica tools. Finally can be
obtained functional equivalent of description in
hardware.

5.3 Standard Hardware Description Languages

For several years VHDL and Verilog have been used
in the domain of hardware design. Those languages
occupy an established place in the electronics system
design. They are well described by IEEE standards.
An important fact is a constant development of HDL
synthesis tools that allow to obtain fully functional
circuits from the HDL description. Nowadays those
languages can be used not only as the design
mainstream but also as an intermediate form between
high level synthesis or other graphical tools that aid
high-level design.

Matlab / Simulink

MEX Function

HDL
Simulator

Mathematical
simulation &
verification

Hardware model

Abstraction level
converter

Matlab API

High-level
Synthesis

Mathematical
model

Mathematical
stimulus Input Data

Fig. 5. Matlab open environment hardware synthesis

and simulation example

5.4 Graphical tools for high level design

A graphical representation is much easier for the
human than a textual one. Determining changes or
relations between components on a drawing is much
easier than analysing textual descriptions in HDL. In
order to simplify the high level design, the engineer
can use block diagrams and graphical FSMs. Both
are available in Aldec tools. The Block Diagram
Editor allows to easily assemble HDL modules into a
functional circuit (Fig. 6). Instantiation of different
HDL components is much easier in the graphical

environment than writing it as text. Designer also can
determine block dependencies and connections on
the schematic.
Finite state machines are basic components in the
design of control circuits. Designers were used to
drawing FSM’s on paper. After that they were
translated to HDL. Delivering a tool that allows for
drawing FSMs and automatic HDL code generation
reduces overhead connected with transforming an
abstract drawing into a synthesizable description
(Fig. 7). Again, a graphical representation allows for
efficient designing.

5.5 Environment for mixed design

In the real world, the design is made from different
components. Each part uses its own design
methodology. There is an increasing need for
integration of design environments in order to enable
using different techniques and components in one
design. Design environment should combine
simulation of HDLs as well as SystemC. Not only
simulation is important but also design management
and visualization tools. Design management tools
allow to keep track of all components that belong to
the design. Visualization tools can graphically
present the relationship between components and
simulation results. They make it possible to quickly
analyse design changes or dependencies in the
graphical form that is more natural for the human
perception then text. Active-HDL from Aldec
combines all described simulation technologies and
tools for the graphical result representation and
design.

6. CONCLUSION

Fig. 6. Schematic of a circuit in Block Diagram

Editor

Increasing complexity of problems that are solved
require new approaches to the design process. Two
basic approaches were presented based on
algorithmic-mathematical concept and on transaction
system description. Both methods require appropriate
tools for abstract model development. After the
verification of virtual description automatic synthesis
tools allow to obtain functional circuit. Graphical
representation and analysis tools make the design and
verification process easier and more efficient.

REFERENCES

Altera “Stratix II Device Handbook” available at
www.altera.com

De Micheli G. “Synthesis and Optimization of
Digital Circuits”, McGraw-Hill, Inc. 1994

Devadas S., A. Ghosh, K. Keutzer „Logic
Synthesis”, McGraw-Hill, Inc. 1994

Ferrari A. and A. Sangiovanni-Vincentelli, System
Design. “Traditional Concepts and New
Paradigms”. Proceedings of the 1999 Int. Conf.
On Comp. Des, Oct 1999, Austin

Gajski, D., SpecC: Specification Language and
Methodology. Kluwer Academic Publishers,
Norwell MA, 2000

Müller W., W. Rstenstiel, J. Ruf, „SystemC
Methodologies and Applications“ Kluwer
Academic Publisher, 2003

Sigmon K. T.A. Davis “Matlab Primer Sixth Edition”
CRC Press, 2001

Synopsys “SystemC Version 2.0 User’s Guide”,
Synopsys Inc., CoWare Inc., Frontier Design
Inc., 2002

Synopsys “System Studio” available at
http://www.synopsys.com/products/cocentric_s
tudio/cocentric_studio.html (2003)

Baker M. “Creative Uses for Spartan-3 dedicated
resources”, Xilinx 2003

Goddard I. M.Trepanier “The Role of FPGA-based
Processing in Medical Imaging” VMEbus
Systems Apr. 2003 available at
http://www.vmebus-systems.com

Fig. 7. FSM diagram view in the graphical editor

Hauck S. “The future of Reconfigurable Systems”
Keynote Address, 5th Canadian Conf. on Field
Programmable Devices

Hezel S. A. Kugel R. Mner D.M. Gavrila „FPGA –
based template matching using distance
transforms” Proc 10th Annual IEEE Symp on
Field Programmable Custom Computing 2002

Xilinx. “The Programmable Logic Data Book”, San
Jose 2003 (CD-ROM edition)

Xilinx App.Note XAPP132 “Using the Virtex Delay
Locked Loop”, available at http://www.xilinx.
com/bvdocs/appnotes/xapp132.pdf

Xilinx App .Note XAPP290 “Two Flows for Partial
Reconfiguration: Module Based or Small Bit
Manipulations” available at http://www.xilinx.
com/bvdocs/appnotes/xapp290.pdf

	Introduction
	FPGA Hardware Platform
	Functional extensions and peripheral blocks
	Memories
	Arithmetic extension circuits
	Hardware processor core
	Clock deskew circuitry
	Universal IO Blocks
	Reconfiguration

	Design Process
	Modern design methodologies
	Algorithmic high level approach
	Functional description - Transaction level modelling

	Tools for modern designs
	Algorithmic approach tools
	SystemC programming language extension
	Standard Hardware Description Languages
	Graphical tools for high level design
	Environment for mixed design

	Conclusion
	References

