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Abstract: The main limitation of many robust model predictive control (MPC) schemes is 
the formidable real-time computational complexity. In this paper, a new algorithm for 
computing efficient approximate solutions to the min-max MPC problem for discrete-
time polytopic systems is proposed. It is shown that the resulting control profile is, in fact, 
piecewise affine (PWA) defined on an orthogonal partition of the state space. This 
explicit structure is exploited for efficient real-time implementation via binary search 
trees. Conditions for robust exponential stability of the closed-loop system can be derived 
in terms of linear matrix inequality (LMI) constraints. Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
Practical difficulties associated with the 
implementation of stabilizing robust model 
predictive control (MPC) laws are well known. The 
algorithms typically rely on the solution of a min-
max optimization problem (Mayne, et al., 2000) in 
which the worst-case performance cost is minimized 
over the control input while satisfying input and state 
constraints. The requirement to solve the min-max 
problem on-line greatly restricts the MPC application 
range to systems with relatively slow dynamics or 
high-performance computers.  
 
Despite the complex nature of the problem, several 
different approaches to reduce the computational 
complexity of robust MPC have been proposed. For 
a linear cost function and parametric uncertainty 
Bemporad, et al., (2003) show that solutions to min-
max control problems can be pre-computed off-line 
in an explicit piecewise affine (PWA) state feedback 
form defined on a polyhedral partition of the state 
space. The advantage of the formulation is that the 
real-time computation simply reduces to a function 
evaluation problem. For quadratic cost functions and 
parametric uncertainty, explicit feedback solutions 

are, in general, not available (Lee and Yu, 1996). On 
the other hand, (Wan and Kothare, 2003) develop an 
approximate algorithm, that is based on the earlier 
work (Kothare, et al., 1996), in which a sequence of 
explicit state feedback laws associated with invariant 
ellipsoidal regions of attraction is obtained. Although 
the approach appears attractive, it often suffers 
excessive conservativeness. To resolve the problem 
Ding, et al., (2004) include a sequence of N free 
control moves separately from the feedback law, 
therefore enabling a balance between computational 
burden and reduction of conservativeness to be 
achieved. However, there is no technique to compute 
an efficient off-line solution to this problem. 
 
The contribution of this paper is to propose a novel 
approach for computing an approximate explicit 
solution to the problem studied in (Ding, et al., 
2004). The presented technique can be viewed as a 
direct extension of approximate explicit solutions 
recently developed for linear constrained systems 
(Johansen and Grancharova, 2003) and nonlinear 
systems (Johansen, 2004). The proposed algorithm 
consists of two independent parts. First, an 
orthogonal state space partition is computed along 
with the associated approximate PWA feedback law. 



Second, the resulting partition is tested for robust 
stability. The analysis is based on the computation of 
globally quadratic Lyapunov functions, the existence 
of which, guarantee robust exponential closed-loop 
stability. It will be shown that the real-time 
computational effort required for the implementation 
of the approximate controller can be reduced to a 
simple search in a finite dimensional tree. 
 

The following notation is used: for a vector  
and positive definite matrix Q the weighted norm 

nx ∈

2|| ||Qx  is denoted by .Tx Qx  |k i kx +  is the value of a 
vector x at a future time  predicted at time k. The 
symbol * induces a symmetric structure, e.g., when 
H and R are symmetric matrices, then 
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2. PROBLEM FORMULATION 
 
Consider the following time varying and/or uncertain 
model 
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where   and  are the input and 

the measurable state respectively. Also 

0;k mu ∈ nx ∈
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 and ( ,n m
kB ×∈ )k kA B  is a controllable pair. For a 

polytopic uncertainty description, Ω is a polytope  
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where  denotes convex hull and [ ,{}Co ⋅ ]l lA B  
 are vertices of the convex hull. 

For the current state 
{1,..., }l∀ ∈ L L

| ,k k kx x=  a typical robust 
constrained MPC algorithm (Mayne, et al., 2000) 
solves the following min-max optimization problem: 
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subject to  
 
    (4) min | max ,k i ku u u+ 0,i∀

    (5) min | max ,k i kx x xΨ + 1,i∀

     (6) | ,k i k kx + ∈ T ,i N∀

    (7) | | ,k i k k k i ku x+ = F ,i N∀

    (8) 1| | | ,k i k k i k i k k i k i kx A x B u+ + + + + += + 0.i∀
 

Here,  is the vector of 

control moves,   and  are symmetric 
positive definite weighting matrices and  
denotes the control horizon. The set  in (6) is 
typically chosen to be control invariant (Blanchini, 

1999) with respect to  in the specified polytopic 
family (2). The following assumption is in order: 
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(A1) min max0u u< <  and min max0 .x x< <  
 
As shown in (Ding et al., 2004), the robust MPC 
problem (3)-(8) can be formulated as a semi-definite 
programming (SDP) problem involving LMI 
constraints. To see this, consider the following 
parameterization of the cost index: 
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where 1 0,γ >  2 0,γ >  and the matrices   ,A ,B ,NA  

,NB   and  are easily obtained from (1)-(2), Q  
and  The sets 

Q R
.R Ω  and NΩ  can be constructed as 

in (Ding et al., 2004) and shall satisfy the following 
assumption: 
 
(A2) Ω  and NΩ  are convex and compact. 
 
Suppose now that the assumptions (A1)-(A2) hold 
and the cost function is parameterized according to 
(9), (10). The following lemma is stated without a 
proof (see Ding et al., 2004 for a complete 
description). 
 
Lemma 1. (On-line robust MPC) Consider the 
uncertain system (1) with input and state constraints 
(4)-(5). The min-max optimization problem (3) can 
be formulated as the following SDP problem: 
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and jjZ  ( ssΓ ) is the jth (sth) diagonal element of Z  



( ). The matrices   and E  can be easily 
obtained from (4)-(5). 
Γ ,G W

 
Certain properties follow immediately from the SDP 
formulation in Lemma 1 (Ding, et al., 2004): 
 
Property 1. Any feasible solution of the optimization 
problem (11) at time k is also feasible for all times 

 .t k>

     

}k k xProperty 2. The set 2{ |n Tx x γ∈R P

⊆

},r

T  is a 
robust positively invariant ellipsoid for the system 
(1) in feedback with the controller (7). 
 
Property 3. The on-line implementation of the min-
max MPC algorithm guarantees exponential closed-
loop stability, once a feasible solution is found. 
 
Despite the fact that SDP problems can be solved in 
polynomial time using interior point algorithms, the 
computation effort required to solve the robust MPC 
problem (11) on-line can be quite prohibitive for 
many real-time applications. In the following, a new 
technique to obtain controllers of significantly lower 
computational complexity will be presented. The 
proposed algorithm off-line determines a sequence of 
approximate feedback laws defined on the state 
space partition of hyper-rectangles. Subsequently, 
the constructed partition as well as the associated 
local controllers will be analyzed for robust stability. 
 
 

3. OFF-LINE APPROXIMATE ROBUST MPC 
 
3.1 Local Feasible Controller 
 

Suppose the set  of feasible initial states can 
be decomposed into n-dimensional boxes or hyper-
rectangles  given by 
polyhedra of the form 

nX ⊂

( ) { } ,r rR R X∈Θ I
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where  denotes the identity matrix and the 
lower and upper limits  and  are real n-vectors 
satisfying  in element wise. The index set of 
boxes is denoted  Moreover, let  
represent a set of M vertices of  The set of all 
explored regions  will henceforth be referred to 
as a partition. In each region of the partition 

n nI ×∈
lh uh

lh h< u

.I 1{ ,..., }Mυ υV

.rR
( )RΘ

( )RΘ  a 
local affine feedback controller 
 

( ) ,x Fx g+U    (19) ,n mNF ×∈ ,mNg ∈
 
is defined. Notice that (19) implies that 

: ' mNX →U  is a PWA function restricted to the 
set ' rr

X
∈∪ R
I  which is the union of all regions in 

 The feedback parameters ( ).RΘ F  and g  can be 

computed as suggested in (Bemporad and Filippi, 
2001), by considering the optimal solutions to the 
min-max optimization problem in Lemma 1 at 
vertices of a hyper-rectangle only. Consider any 
given region  with vertices  

and let 

R X⊆ 1{ ,..., },Mυ υ=V
o
hU  denote the optimal control sequence 

computed at  Suppose the feedback parameters .hυ

F  and g  satisfy the optimization problem: 
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, 1
min  || || ,

M

h hF g h
Fυ g

=
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subject to hυ∀ ∈V  
 

( ) .    (21) h hFυ g υ+ +G W E
 
Lemma 2. (Feasible approximate controller). The 
least squares approximate solution ( ) ,x Fx g= +U  is 
robustly feasible for all x R∈  and all uncertainty 
realizations [ , ] .k kA B ∈ Ω  
Proof. Follows directly from convexity.  
 
The accuracy of the approximation will be measured 
by the difference between the optimal and 
approximate solutions restricted to a region R, i.e. 

 
o 2max || || ,   ,h h hh

Fυ g υε = − − ∀ ∈HU V  (22) 

 
where  is a weighting matrix typically having 
non-zero elements only on the first m components of 
the solution (Bemporad and Filippi, 2001). Notice 
that satisfying the error bound (22) at the vertices 
does not necessarily imply that the bound will be 
satisfied for all 

0H

x R∈  (Grancharova and Johansen, 
2002). One heuristic approach is to include some 
interior points of R and consider the following 
estimate: 
 
ˆ max  ,

hυ
ε ε

∈
=

V
  (23) 

 

where the set 1 2{ , ,..., ,..., }M Mυ υ υ υV  M M∀  
contains, in addition to  a finite number of 
arbitrary points in R. Moreover, it is assumed that for 
all regions in the partition, the error bound (23) 
should respect the following tolerance: 

,V

 
o 2max{ , min || || },a r hh

ε ε ε= HU   (24) 

 
where 0aε >  and 0rε >  can be interpreted as 
absolute and relative tolerances respectively. 
 
 
3.2 Exploration Algorithm 
 
An immediate consequence of enforcing an 
orthogonal structure (18) on the state space partition 
is that the partition can be organized as a 



multidimensional binary search tree, or quad-tree (de 
Berg, et al., 2000), yielding a search complexity that 
is logarithmic in the number of regions. With d levels 
of search in the tree, the computation required to 
determine an active region (the one that contains a 
given state) reduces, in the worst-case, to a total of 

 scalar comparisons leading to an extremely 
fast real-time implementation.  
n d×

 
The objective of the algorithm presented in this 
section is to compute, off-line, a partition of boxes 
defined on a feasible set  along with the 
associated approximate local controllers 

nX ⊂
( )r xU  such 

that the approximation accuracy satisfies the 
tolerance bound (24).  
 
Let the initial region  be a minimal 
bounding box containing the set X. Following 
Johansen and Grancharova (2003), the off-line 
algorithm for computing the approximate solution to 
the min-max optimization problem (11) is presented: 

0R X⊇

 
Algorithm 1. (Off-line approximate robust MPC).  
 
1. Let the set of all unexplored boxes be denoted as 

P. Initialize the partition to the region 0R X⊇  
i.e.  0{ }.P R=

     

 
2. Select any unexplored region  If 1 .R P∈ P ∈ ∅  

then the algorithm terminates successfully. 
 
3. Substitute kx  in (11), (12), (15) and (16) by  hυ

{1, 2,..., }h∀ ∈ M  and solve (11) to obtain the set 

of optimizers o o
1{ ,..., }.MU U  If all solutions are 

feasible, go to step 4. Otherwise, compute the 
largest Euclidean distance between any pair of 
vertices of  If it is smaller than some 
tolerance, mark  explored and infeasible and 
go to step 2. Otherwise, go to step 6. 

1.R

1R

 

4. Compute an approximation ( )xU  using (20). If a 
feasible solution is not found, go to step 6. 

 
5. Compute the error in the solution ε̂  using (22), 

(23). If ˆ ,ε ε  add the region  to  and 
go to step 2. 

1R ( )RΘ

 

6. Partition  into  equal hyper-rectangles 
 Remove  from P and add 

 Go to step 2.  

1R 2n

2 2 1, ..., .nR R
+ 1R

2 2 1, ..., .nR R
+

 
The algorithm terminates after a finite number of 
steps with the piecewise approximation ( )xU  and a 
partition  inside of which this approximation is 
valid. The finite-time termination of the algorithm is, 
in general, not guaranteed, though in extensive 
simulations the termination was always attained. 

( )RΘ

4. STABILITY 
 
4.1 Computing a partition around the origin 
 
Since the approximate feedback controller proposed 
in this paper does not directly inherit the robust 
stability properties of the on-line LMI-based 
controller (Lemma 1), a posteriori stability analysis 
is required to ensure that the feedback is also 
robustly stabilizing. In addition, any nonzero 
tolerance ε  imposed on the approximation error 
renders the asymptotic convergence to the origin 
impossible. This is to be expected as no additional 
conditions have been imposed on the approximate 
solution of Algorithm 1 to enforce asymptotic 
stability in a close neighborhood of the origin.  
In order to make the origin robustly stable, it is 
required that in all boxes containing the origin a local 
stabilizing feedback gain matrix, denoted 0 ,F  is 
utilized. The matrix 0F  may be determined from the 
infinite-time solution of the robust MPC problem 
(11) computed for 0N =  where kx  is properly 
chosen. It can be shown (Kothare, et al., 1996) that 

0 ,  0k ku F x k= ∀  is a stabilizing local feedback 
controller for the uncertain system (1) with the region 
of attraction being an invariant ellipsoid.  
Given a partition ( )RΘ  generated by Algorithm 1, 
the goal of the procedure presented here is to extract 
from regions containing the origin a subset 

 such that  

is optimal everywhere in  (Johansen and 
Grancharova, 2003). Henceforth, the index set of 
boxes belonging to 

00 { } ( )r rR ∈Θ ⊆I RΘ 0 ,  0k ku F x k= ∀

0Θ

0Θ  will be denoted  An 
immediate shortcoming of this approach is that the 
regions for which the feedback matrix 

0.I

0F  is optimal 
tend to be excessively small. Consequently, this may 
significantly limit the set of states steerable to the 
origin for which the off-line approximate robust 
MPC is feasible and closed-loop stable. A heuristic 
solution to this problem may involve enlarging the 
regions contained in 0Θ  until stability is recovered.   
 
 
4.2 Stability of off-line approximate robust MPC 
 
In order to establish stability of the approximate 
robust MPC algorithm, various classes of Lyapunov 
functions may be considered (see Ferrari-Trecate, et 
al., 2002 for an excellent review). In this paper, the 
attention is restricted to the following common 
quadratic Lyapunov functions (Grieder, et al., 2003): 

 

( ) ,T
cV x x P x  ( ),x R∀ ∈Θ   (25) 

 

with 0.n n
cP ×∈ >  Suppose the following robust 

stability condition is satisfied for all boxes in ( )RΘ  
and all uncertainty realizations  l ∈ L
 

2
1( ) ( ) || ||k k kV x V x xρ+ − − ,   (26) 0,k∀
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Fig. 1. Quad-tree partition of the approximate robust 
MPC. 
 
where the scalar 0ρ >  is introduced to enforce 
exponential stability. This condition leads to the so-
called quadratic Lyapunov stability widely studied in 
the past (Ferrari-Trecate, et al., 2002). The 
requirement (26) can be reformulated along the lines 
of (Grieder, et al., 2003) to obtain a description 
suitable for LMI solvers. To see this, define the 
variation of the Lyapunov function associated with 
region r as follows 
 

( ) 2 ,l T l T l
r r rV x x Q x x l c∆ = ∆ + ∆ + ∆ l

r

,c

,r

0.r

  (27) 
 
where  
 

0 0( ) ( )l l l T l l
r r c rQ A B F P A B F P∆ = + + −  

0 0( )l l l T l
r r cl A B F P B g∆ = +  

0( )l l T l
r r cc B g P B g∆ =   (28) 

 

In (28),  and 0
rF 0

rg  denote the first m components of 
the approximate affine feedback law associated with 
a region r. The following lemma is stated without a 
proof (see Grieder, et al., 2003 for a complete 
description). 
 
Lemma 3. There exists a quadratic function (25) 
meeting the requirement (26) if for all r ∈ I  and 

 there exist symmetric matrices  with a 
proper dimension and a nonnegative scalar ρ  
satisfying the following LMI: 

l ∈L 0l
rN
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T l l
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r r r r r
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⎢
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⎤
⎥
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 (29) 

Theorem 1. If there exists a quadratic function (25) 
such that (29) is satisfied, then the off-line 
approximate robust MPC guarantees exponential 
closed-loop stability. 
Proof. See (Grieder, et al., 2003).  
 
It should be noted that due the conservative nature of 
quadratic stability analysis, the numerical procedure 
of Lemma 3 might not lead to a Lyapunov function 
in all cases, even if the closed-loop system is stable. 

Table 1 Characteristics of the approximate solution
 

rε  Number of 
regions 

Average 
error 

Maximum 
error 

0.5 271 0.0179 0.1963 
0.2 358 0.0074 0.1071 
0.1 466 0.0035 0.0531 

0.05 586 0.0016 0.0306 
0.02 865 0.0009 0.0175 
0.01 976 0.0005 0.0117

 
 
Alternatively, a class of smooth non-quadratic 
Lyapunov functions (Johansen, 2000) may be 
exploited to increase the likelihood of successful 
Lyapunov function identification, at the expense of 
greater computational complexity. 
 
 

5. NUMERICAL EXAMPLE 
 

Consider the following uncertain system (Ding, et al., 
2004): 
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where [0.5,2.5]kβ ∈  is a time varying parameter. 
The system is required to satisfy the input and state 
constraints 
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The weighting matrices are selected as I=Q  and 

1=R  and the control horizon is  The initial 
box is defined by 

4.N =

0 [ 0.75,0.75] [ 5,5]R = − × −  and the 
region size is restricted to be larger than  
The tolerance on the approximation error is chosen 
according to (24) with 

0.02.x∆ =

0.0001aε =  and 0.1.rε =  
 
The off-line solution computed with Algorithm 1 is 
depicted in Fig. 1 and consists of 466 hyper-
rectangles and 7 levels of search. The computational 
complexity of the approximate approach consists, in 
the worst-case, of a total of 18 arithmetic operations 
per sample (14 comparisons, 2 multiplications and 2 
additions). For comparison, on a Pentium IV 
machine (1.8 GHz and total memory 500 MB) the 
average time for the on-line robust MPC algorithm 
(11) to compute a solution is 0.9 s, which indicates 
that millions of arithmetic operations are required in 
real-time to solve the LMI optimization problem.  
 

Given an initially disturbed state  
and assuming 

0 [0.75,1.5]Tx =
1.5 sin( ),k kβ = +  the state and input 

trajectories for the on-line (Lemma 1) and off-line 
algorithms are shown in Fig. 2 and Fig. 3 
respectively. Notice that the approximate min-max 
MPC controller achieves nearly the same 
performance as its exact (on-line) counterpart. 
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Fig. 2. The state trajectories for on-line (dashed) and 
off-line (solid) solutions. 
 
It can also be observed that the proposed controller 
keeps the input and state evolutions within the 
constraints despite the time varying uncertainty. The 
accuracy of the approximation is validated by 
computing the absolute error between the first 
components of the off-line and on-line solutions, 
based on simulations for 2525 initial states. Table I 
reports how the average and maximum values of this 
error depend on the relative tolerance .rε  
 
The approximate control law is robustly stabilizing 
as the LMI problem in Lemma 3 provides a common 
Lyapunov function  and a decay 

rate of 
cP = [0.8974 0.2923

0.2923 0.1673]
0.0057.ρ =   

 
 

6. CONCLUSIONS 
 
A new off-line algorithm to address min-max model 
predictive control of systems with parametric 
uncertainty is proposed. It is shown that the 
approximate solution to this problem can be pre-
computed off-line in an explicit form as a PWA state 
feedback law defined on an orthogonal partition of 
the state space. The proposed algorithm allows 
computationally demanding constrained min-max 
optimization to be avoided by a simpler search in a 
finite dimensional tree. This makes the presented 
method an attractive alternative to the existing robust 
MPC schemes.  
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