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Abstract: The Generalized Likelihood Ratio (GLR) test for fault detection as derived by
Willsky and Jones is a recursive method to detect additive changes in linear systems in
a Kalman filter framework. Here, we evaluate the GLR test on a sliding window and
compare it to stochastic parity space approaches. Robust fault detection defined as being
insensitive to faults in the signal space is also studied in the GLR framework.
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1. INTRODUCTION

The work concerns primarily linear Gaussian models,
which over a sliding window can be represented by the
following signal model

Y = Ox + HuU + HvV + HfF + E, (1)

whereY is a vector of outputs during a sliding window
time period,x is the initial state of the system,O is
the extended observability matrix,Hu, Hv and Hf

are Toeplitz matrices describing how the inputs,U ,
process noise,V , and faults,F , enter the system and
E is additive measurement noise. The sum of two
noise terms is a Gaussian noise withCov(HvV +
E) = S. The details are described in Section 2 and
in (Gustafsson 2001). Fault detection is here seen as
the hypothesis test

H0 : F = 0 (2a)

H1 : F 6= 0. (2b)

Recently, (Desai and Mangoubi 2003) proposed robust
fault detection as only testing for faults that do not lie
in the signal space. In our notation, the signal space
is spanned by the observability matrix, which means
that we exclude faultsF such thatHfF belongs to
the column space ofO and thus can be explained by
a different state vector. Using the pseudo-inverseH†

f ,

this means thatF does not belong to the range ofH†
fO

and the hypothesis test becomes

H0 : F ∈ R(H†
fO) (3a)

H1 : F /∈ R(H†
fO), (3b)

whereR(·) denotes the range. These two tests will be
treated in parallel.

The basic residual to use in fault detection isr = Y −
HuU , which depends on the statex. The classic parity
space approach (Basseville and Nikiforov 1993, Chow
and Willsky 1984, Dinget al. 1999, Gertler 1997,
Gertler 1998), computes a projection of this residual to
the null space of the observability matrix, soWT

1 r =
WT

1 (HfF + HvV + E) is independent of the state.
The original parity space approach is a deterministic
one, so this residual is non-zero for non-zero faults.
The extension to process and measurement noise was
done in (Gustafsson 2002), and analytical results on
detectability of an all-one fault vectorF was derived.

The first extension here is to arbitrary fault vectors,
including incipient faults (slowly increasing) and gen-
eral time-varying fault profiles. The GLR approach
(Willsky and Jones 1976) maximizes the likelihood
ratio function over all faults, and the explicit GLR test
statistic will be given. It turns out that this in both



hypotheses tests (2) and (3) can be expressed as a
certain projection of the residual.

A second approach is to estimate the state rather than
projecting the residual to the parity space.

2. NOTATION

2.1 State space model to signal model

The linear system is defined as the state space model

xt+1 = Atxt + Bu,tut + Bf,tft + Bv,tvt

yt = Ctxt + Du,tut + Df,tft + et (4)

We separate the following types of input:

• Deterministic known inputut. This is common
in control applications.

• Deterministic unknown fault inputft, which is
used in the fault detection literature. The known
matricesBf,t andDf,t determines which part of
the system will be affected by the different faults.

• Stochastic unknown disturbancesvt and et,
process noise and measurement noise, respec-
tively, which are used in the Kalman filter setting.
Both will here be assumed to be independent
and Gaussian, with zero mean and covariance
matricesQt andRt, respectively.

To establish the correspondence of models (4) and
(1), stackL signal values to define the signal vectors

Yt =
(
yT

t−L+1, . . . , y
T
t

)T
, etc for all signals. We here

use the time indext to note that fault detection is a
recursive task. Also define the Toeplitz matrices (time
indices are omitted for simplicity)

Hs =








Ds 0 · · · 0
CBs Ds · · · 0

...
. . .

...
CAL−2Bs · · · CBs Ds








(5)

for all signalss = u, f, v and the observability matrix

O =








C
CA

...
CAL−1








. (6)

Equation (4) can then be written as

Yt − HuUt =

Oxt−L+1 + HfFt + HvVt + Et. (7)

which is (1). Note that we use the notationx for
xt−L+1 to shorten the notation from here on. The
definition of

S = Cov(HvVt + Et) (8)

is straightforward.

2.2 Basic definition and mathematical tools

The basic tools in the derivation are the following:

• The pseudo-inverse operationused here is the
Moore-Penroseinverse which can be found in,
i.e., (Golub and van Loan 1996). In the case
whereA has full row rank it can be computed
asA† = (AT A)−1AT .

• Projection operator. A projection on the range
space,R(A), spanned by the columns inA is
given byPA = A(AT A)−1AT = AA†, with
the obvious propertyPAA = A. RA denotes a
basis forR(A).

• Projection on null space. To remove the state
dependence in (1), the orthogonal projectionI −
PO is used, with the obvious property(I −
PO)O = 0. NO is a basis for the null space of
the columns inO denotedN (O).

• Whitening. Assume thatCov(r) = P , then
Cov(P−1/2r) = I, so pre-multiplying with
P−1/2 is a whitening operation. A normalized
residual can then be defined asr̄ = P−1/2r.

• Minimum variance (MV) estimation . For the
equation systemAx = r, the least squares (LS)
solution x̂LS = A†r is the minimum variance
estimate if and only ifCov(r) = I. That is, using
pre-whitened residual, we have

x̂MV = (P−1/2A)†P−1/2r

= (AT P−1A)−1AT P−1r.

• GLR test. To test whetherFt = 0 or not when
r̄ ∼ N(P−1/2HfFt, I), the log likelihood ratio
of the two hypotheses is first formed:

L(Ft) = 2 log
e−

1
2‖r̄−P−1/2Hf Ft‖

2
2

e−
1
2‖r̄‖2

2

=

= ‖r̄‖2
2 − ‖r̄ − P−1/2HfFt‖

2
2.

The likelihood ratio is then maximized over the
unknown parameterFt to get the GLR test statis-
tic

L = max
Ft

(

‖r̄‖2
2 − ‖r̄ − P−1/2HfFt‖

2
2

)

=

= /Ft = (P−1/2Hf )†r̄/ =

=
(

‖r̄‖2
2 − ‖r̄ − P−1/2Hf (P−1/2Hf )†r̄‖2

2

)

= (r̄T r̄− r̄T (I−P
P−

1
2

Hf
)r̄) = r̄TP

P−
1
2

Hf
r̄

The test statistic,L, is a sum of squared Gaussian
variables with rank(PP−1/2Hf

) degrees of free-
dom. It is thereforeχ2(rank(PP−1/2Hf

)) distrib-
uted. The assumption here is thatr̄ has uncorre-
lated elements anddim(r̄) ≥ rank(PP−1/2Hf

).
Based on knowledge about the distribution of the
test statistic a suitable threshold for detection can
be chosen.

• Fault profile model. To get a low order pa-
rameterization of the fault profile, and a non-
ambigous distinction of fault and process noise,
assume that the fault profile is a smooth function



(rather than noise). That is, Letft = Fmt, where
F defined a certain fault direction, andmt is
the scalar time-varying magnitude. Choose basis
functionsϕt of smooth functions (for instance
polynomials), so that we get a modelmt = ϕT

t θ.
For simplicity, assume an orthonormal basis
(for instance Legendre polynomials), such that
∑t

k=t−L+1 ϕtϕ
T
t = I. In that case, we preserve

fault energy so‖mt‖2 =
∑t

k=t−L+1 m2
t =

‖θ‖2. Then, useB̄f,t = Bf,tFϕT
t and F̄ = θ

in (4), which givesFt = θ in (7).
• Residual with uncorrelated elements. Define a

prediction error as

ε = Y − HuU −Ox̂.

The prediction error,ε, will sometimes not have
uncorrelated elements. This can cause the covari-
ance matrix ofε to be singular. To generate a
residual with uncorrelated elements, the follow-
ing Singular Value Decomposition (SVD) of the
covariance matrix is made.

Cov(ε) =

=
(

Ur Ũr

)
(

Σ 0
0 0

) (
UT

r

ŨT
r

)

=

= UrΣUT
r (9)

Then the residual

r = UT
r ε, (10)

will have the covariance

Cov(r) = E rrT = EUT
r εεT Ur = Σ, (11)

which is nonsingular.

3. GLR TEST STATISTICS

This section first summarizes and then derives the
main results. Three different cases are considered, the
difference between them is how the initial state ,x, is
treated. In case 1, estimation is done from the data
window. A parity space method is used in case 2 and
in case 3 the method in case 1 is combined with an
estimate from old data. The results can be summarized
in the following algorithm.

1. Compute the residuals. In order to do this, the
following covariances have to be known:

Cov(x̂(1)) = P (1) (Given by a Kalman filter)

Cov(x̂(2)) = (OT S−1O)−1 = P (2)

Cov(ε
(1)
t ) = WT

1 SW1

Cov(ε
(2)
t ) = (I − PO)S(I − PO)

Cov(ε
(3)
t ) = WT

3 SW3 + OPP (1)−1
POT

where

WT
1 = I −O(S−1/2O)†S−1/2

WT
3 = I −OPP (2)−1

(S−1/2O)†S−1/2

P =
(

P (1)−1
+ P (2)−1

)−1

.

Form the SVD of the covariances according to
(9) and then form the residuals as

r̄
(1)
t = Σ(1)−1/2

U (1)
r

T
WT

1
︸ ︷︷ ︸

W̄1

(Y − HuU)

r̄
(2)
t = Σ(2)−1/2

U (2)
r

T
(I − PO)

︸ ︷︷ ︸

W̄2

(Y − HuU)

r̄
(3)
t = Σ(3)−1/2

U (3)
r

T
(

WT
3 (Y − HuU)

−OPP (1)−1
x̂(1)

)

.

Also define

W̄3 = Σ(3)−1/2
U (3)

r

T
WT

3 .

2. Compute the test statisticsLi,c andLi,r where
i indicates the method used (casei) and c, r
indicates conventional or robust GLR test respec-
tively.

L1,c = L1,r = r̄
(1)T
t PW̄ T

1 Hf
r̄
(1)
t (12a)

L2,c = L2,r = r̄
(2)T
t PW̄ T

2 Hf
r̄
(2)
t (12b)

L3,c = r̄
(3)T
t PW̄ T

3 Hf
r̄
(3)
t (12c)

L3,r = r̄
(3)T
t PW̄ T

3 (I−PO)Hf
r̄
(3)
t (12d)

3. Compute thresholds for detecting faults. All
thresholds areχ2(rank(PA))-distributed, where
PA denotes the projection that is used to compute
the test statistic. See also section 2.2.

3.1 Case 1: state estimation in sliding window

In this case,x is estimated by minimum variance
estimation from data in the time window as

x̂(2) = (S−1/2O)†S−1/2(Y − HuU)

∼ N

(

x+(S−1/2O)†S−1/2HfF, (OT S−1O)−1
)

,

(13)

then the prediction error becomes

ε
(1)
t = Y − HuU −Ox̂(2) =

(

I −O(S−1/2O)†S−1/2
)

︸ ︷︷ ︸

W T
1

(

Y − HuU
)

∼ N

(

WT
1 HfF, Cov(ε

(1)
t )

)

. (14)

The covariance becomes

Cov(ε
(1)
t ) = WT

1 SW1. (15)

To form a residual with uncorrelated elements, an
SVD is formed according to (9) as

Cov(ε
(1)
t ) = U (1)

r Σ(1)U (1)
r

T
.



Then the residual becomes

r
(1)
t = U (1)

r

T
ε
(1)
t . (16)

To determine the likelihood ratio with a hypothesis
test, a normalized residual is formed as

r̄
(1)
t =

(

Cov(r
(1)
t )

)−1/2

r
(1)
t

= Σ(1)−1/2
U (1)

r

T
WT

1
︸ ︷︷ ︸

W̄ T
1

(Y − HuU)

∼ N(W̄T
1 HfF, I). (17)

Conventional GLR Test The hypotheses in (2) are
here

H0 : r̄
(1)
t ∼ N(0, I)

H1 : r̄
(1)
t ∼ N(W̄T

1 HfF, I).

This gives the log-likelihood ratio

L1,c = 2 max
F

log
e−

1
2 ‖r̄

(1)
t −W̄ T

1 Hf F‖2
2

e−
1
2 ‖r̄

(1)
t ‖2

2

, (18)

which is maximized whenF = (W̄T
1 Hf )†r̄

(1)
t . Then,

L1,c =

− ‖r̄
(1)
t − W̄T

1 Hf (W̄T
1 Hf )†

︸ ︷︷ ︸

P
W̄T

1
Hf

r̄
(1)
t ‖2

2 + ‖r̄
(1)
t ‖2

2

= −r̄
(1)T
t (I − PW̄ T

1 Hf
)T (I − PW̄ T

1 Hf
)r̄

(1)
t

+ r̄
(1)T
t r̄

(1)
t = r̄

(1)T
t PW̄ T

1 Hf
r̄
(1)
t =

= ‖r̄
(1)
t ‖2

P
W̄T

1
Hf

. (19)

Robust GLR Test The hypotheses in the robust test
questions if there is no fault or if the fault resides in
the subspace orthogonal to the signal space. Thus, the
hypotheses in (3) are

H0 : r̄
(1)
t ∼ N(0, I)

H1 : r̄
(1)
t ∼ N

(

W̄T
1 (I − PO)HfF, I

)

.

The log-likelihood ratio becomes

L1,r = 2 max
F

log
e−

1
2‖r̄

(1)
t −W̄ T

1 (I−PO)Hf F‖2
2

e−
1
2‖r̄

(1)
t ‖2

2

. (20)

This ratio is maximized for

F =
(

W̄T
1 (I − PO)Hf

)†

r̄
(1)
t

which gives

L1,r = r̄
(1)T
t PW̄ T

1 (I−PO)Hf
r̄
(1)
t (21)

Lemma 1.The robust and conventional tests for case 1
coincide since

W̄T
1 = W̄T

1 (I − PO). (22)

PROOF. Since

W̄T
1 = Σ(1)−1/2

U (1)
r

T
WT

1 , (23)

it is sufficient to prove thatWT
1 PO = 0 to justify (22).

WT
1 PO =

(

I −O(S−1/2O)†S−1/2
)

OO†

= O
(

I − (S−1/2O)†S−1/2O
︸ ︷︷ ︸

=I

)

O† = 0

2

Then, according to Lemma 1, the robust test statistic
can be written as

L1,r = r̄
(1)T
t PW̄ T

1 Hf
r̄
(1)
t = ‖r̄

(1)
t ‖2

P
W̄T

1
Hf

. (24)

3.2 Case 2: parity space approach

In this case the residual,Y − HuU , is multiplied
with the orthogonal complement ofO, I − PO, to
eliminate the dependence onx. Then the prediction
error becomes

ε
(2)
t = (I − PO)

︸ ︷︷ ︸

W T
2

(Y − HuU)

∼ N(WT
2 HfF, WT

2 SW2). (25)

A residual with uncorrelated elements is formed
by (10) as

WT
2 SW2 = U (2)

r Σ(2)U (2)
r

T
⇒ r

(2)
t = U (2)

r

T
ε
(2)
t .
(26)

In order to get unit variance, the residual can be
normalized as

r̄
(2)
t = Σ(2)−1/2

r
(2)
t

= Σ(2)−1/2
U (2)

r

T
WT

2
︸ ︷︷ ︸

W̄ T
2

(Y − HuU)

∼ N(W̄T
2 HfF, I). (27)

Conventional GLR Test The hypotheses in (2) are
here

H0 : r̄
(2)
t ∼ N(0, I)

H1 : r̄
(2)
t ∼ N(WT

2 HfF, I).

This gives the log-likelihood ratio fault/no fault

L2,c = 2 max
F

log
e−

1
2‖r̄

(2)
t −W̄ T

2 Hf F‖2
2

e−
1
2‖r̄

(2)
t ‖2

2

=

= max
F

−
(

‖r̄
(2)
t − W̄T

2 HfF‖2
2 − ‖r̄

(2)
t ‖2

2

)

(28)

This ratio is maximized whenF = (W̄T
2 Hf )†r̄

(2)
t ,

then the expression becomes



L2,c = −‖r̄
(2)
t − W̄T

2 Hf (W̄T
2 Hf )†

︸ ︷︷ ︸

P
W̄T

2
Hf

r̄
(2)
t ‖2

2

+ ‖r̄
(2)
t ‖2

2 = r̄
(2)T
t PW̄ T

2 Hf
r̄
(2)
t = ‖r̄

(2)
t ‖2

P
W̄T

2
Hf

.

(29)

Robust GLR Test Also for this case the robust hy-
potheses derived from (3) becomes

H0 : r̄
(2)
t ∼ N(0, I)

H1 : r̄
(2)
t ∼ N

(

WT
2 (I − PO)HfF, I

)

.

When calculating the test statistic as in section 3.1, it
becomes

L2,r = ‖r̄
(2)
t ‖2

P
W̄T

2
Hf

. (30)

This is the same residuals that we are testing with the
conventional test. So when estimatingx by projection,
the robust and conventional tests coincide. The reason
for this is that the the termI −PO is already a part of
WT

2 and(I − PO)(I − PO) = I − PO.

3.3 Case 3: state estimation in preceding and sliding
window

In this casex is estimated by a minimum variance esti-
matorx̂(2) with covarianceP (2) from data in the slid-
ing window as in section 3.1, but also with a Kalman
filter from old data, providinĝx(1) with covariance
matrix P (1). This appears to be a logical approach to
detect faults in the signal space, since the difference in
state estimates should be due to estimation errors and
faults in the signal space only. For instance, we have

rt = O(x̂(2) − x̂(1))

∼ N

(

O(S−1/2O)†S−1/2HfFt,

O(P (1) + P (2))OT
)

. (31)

This is a residual for testing faults in the signal space.
For faults orthogonal to the signal space, we proceed
by forming the joint state estimate over all data by
the standard sensor fusion formula as outlined below.
The estimate from the Kalman filter is assumed to be
Gaussian distributed

x̂(1) ∼ N(x, P (1)). (32)

The minimum variance estimate ofx from data in the
window is given by

x̂(2) = (S−1/2O)†S−1/2(Y − HuU)

∼ N

(

x + (S−1/2O)†S−1/2HfF,

(OT S−1O)−1

︸ ︷︷ ︸

P (2)

)

. (33)

Then,

x̂ = P
(

P (1)−1
x̂(1) + P (2)−1

x̂(2)
)

, (34)

where

P =
(

P (1)−1
+ P (2)−1

)−1

. (35)

The prediction error is then formed as

ε
(3)
t = Y − HuU −Ox̂

= (I −OPP (2)−1
(S−1/2O)†S−1/2)

︸ ︷︷ ︸

W T
3

×

× (Y − HuU) −OPP (1)−1
x̂(1)

= WT
3 (Ox + HfF + E) −OPP (1)−1

(x + x̃(1))

= Ox − (OPP (2)−1
x + OPP (1)−1

x)
︸ ︷︷ ︸

Ox

+ WT
3 (HfF + HvV + E) − PP (1)−1

x̃(1)

= WT
3 (HfF + E) − PP (1)−1

x̃(1)

∼ N

(

WT
3 HfF, Cov(ε

(3)
t )

)

where

x̃(1) = x̂(1) − x ∼ N(0, P (1)) (36)

Cov(ε
(3)
t ) = WT

3 SW3 + OPP (1)−1
POT . (37)

For the same reasons as in section 3.1 and 3.2 , an
SVD is formed of the covariance matrix to get a basis
for a residual with uncorrelated elements.

Cov(ε
(3)
t )) = U (3)

r Σ(3)U (3)
r

T
⇒ r

(3)
t = U (3)

r

T
ε
(3)
t

(38)
The normalized residual is then formed as

r̄
(3)
t = Σ(3)−1/2

r
(3)
t

∼ N(Σ(3)−1/2
U (3)

r

T
WT

3
︸ ︷︷ ︸

W̄ T
3

HfF, I). (39)

Conventional Likelihood Test The hypotheses for
the conventional test are

H0 : r̄
(3)
t ∼ N(0, I)

H1 : r̄
(3)
t ∼ N(W̄T

3 HfF, I).

This yields the log-likelihood ratio

L3,c = max
F

log
e−

1
2‖r̄

(3)
t −W̄ T

3 Hf F‖2
2

e−
1
2‖r̄

(3)
t ‖2

2

=

= max
F

−
(

‖r̄
(3)
t − W̄T

3 HfF‖2
2 − ‖r̄

(3)
t ‖2

2

)

. (40)

Which is maximized forF = (W̄T
3 Hf )†r̄

(3)
t , then

L3,c =

= −
(

‖(I − W̄T
3 Hf (W̄T

3 Hf )†
︸ ︷︷ ︸

P
W̄T

3
Hf

)r̄
(3)
t ‖2

2 − ‖r̄
(3)
t ‖2

2

)

= r̄
(3)T
t PW̄ T

3 Hf
r̄
(3)
t = ‖r̄

(3)
t ‖2

P
W̄T

3
Hf

(41)



Robust Likelihood Test The hypotheses for the ro-
bust test are

H0 : r̄
(3)
t ∼ N(0, I)

H1 : r̄
(3)
t ∼ N(W̄T

3 (I − PO)HfF, I).

Similar calculations as for the conventional test yield
the robust log-likelihood ratio

L3,r = r̄
(3)T
t PW̄ T

3 (I−PO)Hf
r̄
(3)
t =

= ‖r̄
(3)
t ‖2

P
W̄T

3
(I−PO )Hf

. (42)

Comments on the TestsThese tests are closely re-
lated to case 1 wherex is determined only from data
in the window. If P (1) → ∞I, then the normalized
residual in (39) is identical to the one in case 1 and
therefore also the detector.

Consider the case whereP (2) → ∞I. Then it is easy
to see thatWT

3 = I andP = P (1). The prediction
error is then

ε
(3)
t = Y − HuU −Ox̂(1) ∼ N

(

HfF, Cov(ε
(3)
t )

)

(43)

Cov(ε
(3)
t ) = S + OP (1)OT . (44)

SinceS has full rank,Cov(ε
(3)
t ) will have full rank.

Therefore, no dimension reduction has to be done
when forming the residual. The normalized residual
then becomes

r̄
(3)
t = Cov(ε

(3)
t )−1/2(Y − HuU −Ox̂(1)). (45)

Lemma 2.If the uncertainty in x̂(1) is large, i.e.,
P (1) → ∞I, then the normalized residual in (45) will
not be affected by signals in the signal space. Thus,
the test coincides with case 2, where the signal space
is projected away.

PROOF. Rewrite the covariance matrix of the predic-
tion error as

Cov(ε
(3)
t ) = S + OP (1)OT =

S +
(
O NO

)
(

P (1) 0
0 0

) (
OT

NO
T

)

(46)

whereNO is a basis of the orthogonal complement to
O. The matrix

(
O NO

)
thus span the whole space for

Cov(ε
(3)
t ). We can therefore write

S =
(
O NO

)
(

T 0

0 T̃

) (
OT

NO
T

)

, (47)

whereT andT̃ is chosen suitably. Then,

Cov(ε
(3)
t )−1/2 =

(
O NO

)
(

(T + P (1))−1/2 0

0 T̃−1/2

) (
OT

NO
T

)

(48)

and when the uncertainty in̂x(1) is large then

lim
P (1)→∞I

Cov(ε
(3)
t )−1/2 =

(
O NO

)
(

0 0

0 T̃−1/2

) (
OT

NO
T

)

=

NOT̃−1/2NO
T , (49)

which is a projection on the space orthogonal toO.
2

4. CONCLUSIONS

The original generalized likelihood ratio (GLR) test
for fault detection where derived using a Kalman filter
approach, and thus all past data influence the test
statistic. On the other hand, the parity space approach
is defined over a sliding window. In order to compare
these standard approaches, we have derived the GLR
test statistic for fault detection in linear Gaussian
systems based on data over a sliding window. This is
done in a systematic way for different assumption on
the fault range space (robust/non-robust) and residual
generators (parity space/state estimation). It turns out
that all these cases correspond to different projections
of the basic model residual.
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