
SENSORLESS SPEED AND FLUX REGULATION OF
INDUCTION MOTORS: A SLIDING MODE APPROACH

C. Aurora ∗ A. Ferrara ∗∗

∗ CESI, via Rubattino, 54, 20134 Milano, Italy
e-mail: aurora@cesi.it

∗∗ Dipartimento di Informatica e Sistemistica
Universit̀a degli Studi di Pavia

via Ferrata 1, 27100 Pavia, Italy
e-mail: antonella.ferrara@unipv.it

Abstract: A novel sliding mode observer for current-based sensorless speed control
of induction motors is presented in this paper. The control objective is to guarantee
asymptotic tracking of prespecified speed and rotor flux references without mechanical
sensors. To this end, an adaptive sliding mode speed and flux observer is introduced: it
is based on a different and original approach with respect to the widely used equivalent
control techniques. As regards the control algorithm, the problem of chattering, typical of
sliding mode controllers, is overcome since the derivative of the stator currents are used
as discontinuous forcing actions, while the actual control signals are continuous, thus
limiting the mechanical stress.Copyrightc© 2005 IFAC
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1. INTRODUCTION

Sensorless control of motor drives has become more
and more frequently used in industrial and practical
application during recent years. This approach has
the advantage of reducing the realization costs of the
control system, thanks to the elimination of the sen-
sors relevant to the mechanical variables (Dezzaet
al., 1999). Yet, the problem of controlling the speed
(torque) and the flux in induction motors is quite hard
to solve. Generally, no flux sensors are provided, and
flux observers convergence risks to be compromised
by significant parameters values variations (the most
critical, the rotor resistance, may change up to 200%
of the nominal value), while the measurements of
stator currents turn out to be affected by noise, due
to electro-magnetic disturbances or harmonics. As a
consequence, high performances and high robustness
properties are required to the controller and the ob-
servers.

A great number of valid proposals of sensorless con-
trol schemes for induction motors have appeared in
the literature recently (see, for instance, (Marinoet
al., 1996a), (Kwon and Kim, 2004), and the references
therein cited). In this context, the so–called sliding
mode control design methodology, capable of guar-
anteeing high levels of robustness against matched
disturbances and parameters variation, seems to be
well applicable (Yanet al., 2000), (Auroraet al.,
2001), (Derdiyoket al., 2002), (Bartoliniet al., 2003),
(Aurora and Ferrara, 2004).

In this paper, a novel adaptive sensorless sliding mode
control strategy is presented. A classical current-fed
induction motor control scheme, where the stator cur-
rents are assumed as control signals, is adopted, main-
taining the conventional control loops and simply re-
placing the control algorithm. To avoid the problem
of chattering, the time derivatives of the currents have
been regarded as auxiliary control signals, while the



actual control signals are continuous. The key ele-
ment of the proposed method is the coupling of orig-
inal sliding mode speed and flux adaptive observers.
Convergence of flux, speed, rotor time constant and
load torque estimates to the real values is guaranteed.
Simulations show that the observer-based control al-
gorithm provides high regulation accuracy and appre-
ciable robustness, even during a zero speed test.

2. MODEL OF THE INDUCTION MOTOR

In a fixed reference framea− b, the fifth order induc-
tion motor model is defined by the following equations
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where the state variables are the rotor speedω, the
rotor fluxes(ψa, ψb) and the stator currents(ia, ib).
Stator voltages(ua, ub) are the control signals,Γl is
the load torque;J is the moment of inertia andKf

the friction coefficient;(Rr, Rs) and(Lr, Ls) are the
rotor and stator windings resistances and inductances,
respectively, andM is the mutual inductance. An
induction motor with one pole pair is considered.
To simplify notations, the following parameters have
been introduced

α =
Rr

Lr
, σ = 1− M2

LsLr
, β =

1
σ

M

LsLr
, (2)

For current-fed induction motors with high-gain cur-
rent loops the motor control algorithm can be con-
structed on the basis of the following reduced order
motor model
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by considering the stator currents(ia, ib) as control
inputs, the rotor fluxes(ψa, ψb) as the state variables,
Γl as an external input, andα as an unknown param-
eter (depending on the rotor resistance value). The
quantitiesωr (t) andΨ2

r (t) are the reference signals
for the rotor speed and the square modulus of the rotor

flux Ψ2 = ψ2
a +ψ2

b , respectively1 . Then, the tracking
errorsω̃ andΨ̃ can be defined as
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such that their time derivatives are
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3. THE PROPOSED STATE FEEDBACK SLIDING
MODE CONTROL

Among the various sliding mode control solutions for
induction motors proposed in the literature, the one
presented in (Utkin, 1992) can be regarded as the
reference one. It is briefly recalled in (Aurora and
Ferrara, 2004). Its purpose is to directly control the
inverter switching by use of three switching reference
signals for the stator voltages.

For current-fed induction motors, the stator currents
can be regarded as control variables. In order to over-
come the problem of chattering, a sliding mode con-
trol algorithm can be designed by considering their
time derivatives as control inputs.

It is first necessary to derive the sliding functions to
impose the desired behavior of speed and flux errors.
To this end, let

{
s1 = kωω̃ + ˙̃ω
s2 = kΨΨ̃ + ˙̃Ψ

(6)

with the dynamics ofsT = (s1,s2) described by

ds

dt
= F + Di̇ (7)

where i̇T =
(
i̇a, i̇b

)
is the two dimensional control.

The components of vectorFT = (f1, f2) may be
regarded as bounded disturbances, which are in turn
continuous functions of motor parameters, speed, ro-
tor fluxes, reference signals and of their first and sec-
ond time derivatives.
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with k1 and k2 positive constants. By transforming
the sliding functions through the use of the matrix
Ω = D−1, and remembering that matrixΩ exists

1 To allow for correct operation of the control algorithm, the first
and second time derivatives of the speed and flux references are
assumed to be bounded.



when ‖Ψ‖ 6= 0, the state motion on the subspace
s∗ = 0 turns out to be characterized by the equation

ds∗

dt
= ΩF +

dΩ
dt

Ds∗ + i̇ (9)

By choosing the switching control law

i̇ = −i̇0sign (s∗) (10)

for sufficiently high values of the design parameteri̇0
the objective of reaching the manifolds∗ = 0 in finite
time is attained. In contrast to the nonlinear output
feedback control scheme presented in (Marinoet al.,
1996b), the proposed sliding mode control algorithm
does not require the knowledge of the load torque
(and of the friction coefficient as well), but only the
knowledge of an upper bound of it.

4. THE SLIDING MODE ADAPTIVE SPEED AND
FLUX OBSERVER

In contrast to (Yanet al., 2000) and (Derdiyoket
al., 2002), the adaptive speed and flux observer here
proposed does not rely on the equivalent control
method (Utkin, 1992) according to which unknown
quantities are obtained by filtering a discontinuous
signal. Indeed, nonlinear speed and flux estimation
laws are driven by signals computed by resorting to
an auxiliary sliding mode current observer.

First, let us suppose that a flux observer is available

dψ̂a

dt
= fψa ,

dψ̂b

dt
= fψb (11)

wherefψa andfψb
are functions that will be defined

later. Now, let us design a sliding mode current ob-
server
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where, according to (Utkin, 1992), vanishing of the
estimate errors̃ıa = ı̂a− ia andı̃b = ı̂b− ib is ensured
by sufficiently high gainKi > 0 of the discontinuous
signal, introduced to enforce a sliding mode behavior.
By considering the estimate errors dynamics
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analogously to (Marinoet al., 1996b), auxiliary quan-
tities are introduced

za = ı̃a + βψ̃a , zb = ı̃b + βψ̃b (14)

which exhibit the dynamics

dza

dt
= −Kisign (̃ıa) ,

dzb

dt
= −Kisign (̃ıb) (15)

and reconstruction of the fluxes estimate errorsψ̃a =
ψ̂a−ψa andψ̃b = ψ̂b−ψb related to (11) turns out to
be feasible, i.e.

ψ̃a =
1
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1
β

(zb − ı̃b) (16)

Relying on knowledge of variables̃ψa and ψ̃b, it is
possible to define functionsfψa andfψb

so that the
flux observer (11) can be rewritten as
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whereKψ ≥ 0, while ω̂ andα̂ are estimated by
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with fω andfα additional terms, to be defined, intro-
duced to impose the desired behavior to the estimation
errorsω̃ = ω̂ − ω andα̃ = α̂− α, that is
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Note that, as previously mentioned, two key assump-
tions have been taken into account: as in (Marinoet
al., 1996b), α is regarded as an unknown but con-
stant quantity, while the load torque is supposed to be
known, as assumed in (Marinoet al., 2002). Relying
on (17), the flux estimate errors dynamics turns out to
be
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Now, it is possible to select the following Lyapunov
function

Vω =
1
2

{
ψ̃2

a + ψ̃2
b +

1
γω

ω̃2 +
1
γα

α̃2

}
(21)

in whichγω > 0 andγα > 0.
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Fig. 1. The proposed induction motor control scheme.

By developing calculations, it is easy to prove that to
guaranteėVω ≤ 0 one can selectKψ = 0 and

fω = − 1
J
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(
ψ̂b −Mib

))
(22)

Equations (18), with additional termsfω andfα de-
fined in (22), provide an estimation law for the me-
chanical speedω and an adaptive law for the unknown
parameterα. Convergence of the flux observer (17)
is so guaranteed. Fig. 4 shows the proposed induction
motor control scheme with full details.

4.1 Some comments on convergence

To guarantee the convergent behavior of the update
law of α, it is necessary to show that the signal which
drives such a law verifies the persistency of excitation

condition (Narendra and Annaswamy, 1989). To this
aim, the second equation in (18) can be put in the form
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Persistency of excitation is guaranteed provided that
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t
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is positive definite forT > 0 and for anyt ≥ 0. This
condition is satisfied, since it results∀t ≥ 0
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A similar analysis may be performed aboutω.

5. LOAD TORQUE ESTIMATION

Except for a limited field of applications, the value of
the load torque, which needs to be known for the speed
and flux observer described in the previous section, is
usually unavailable. Thus, a load torque observer has
been developed and tested in simulation. Although, at
the present time, the proposed estimation law is under
theoretical investigation, good convergence properties
have been proved in simulative tests, combining the
load torque estimator with the sliding mode adaptive
observer (12) (17) (18).

According to the Field Oriented Control approach
(Blaschke, 1972), the induction machine model (1)
can be also described in a rotating reference frame of
axesd − q, where the axisd is oriented like the rotor
flux vector. Letϑs be the angle between the rotatingd
axis and the fixeda axis

ϑs = arctan
ψb

ψa
(26)

The componentsid and iq of the stator current are
directly proportional to the flux magnitude and to the
motor torque, respectively, and can be computed as

[
id
iq

]
=

[
cosϑs sin ϑs

− sin ϑs cos ϑs

] [
ia
ib

]
(27)

The load torque observer here proposed has been
designed on the basis of a simulative analysis, in
the d − q reference frame, of the transient behavior
of the Sliding Mode Observer (12) (17) (18) when
the induction motor is loaded but the load torque
information is missing. The adopted estimation law is
based on a sort ofiq current estimation error

dΓ̂l

dt
= γΓ

(
(̂ıa − ia) sin ϑ̂s − (̂ıb − ib) cos ϑ̂s

)
(28)



whereγΓ > 0 and

ϑ̂s = arctan
ψ̂b

ψ̂a

(29)

It guarantees good convergence performances if com-
bined with the sensorless adaptive sliding mode ob-
server previously introduced, as confirmed by simula-
tions.

6. SIMULATION EXAMPLES

6.1 Simulation setup

To validate the proposed control algorithm (10) and
the speed and flux adaptive observer, simulations have
been carried out by use of Matlab and Simulink,
adopting the same parameters of the experimental
setup shown in (Marinoet al., 1996b), in which a 600
W one pole pair induction motor with a rated speed of
1000 rpm is used.

The main purposes were to inspect both performances
and robustness properties in reference tracking and
observation accuracy. About the control algorithm,
another task is to verify that the limit imposed to the
maximum value of the stator current time derivatives
does not compromise the dynamical performances
during transients.

The speed and flux modulus references and the load
torque profile are shown in Fig. 6.1: both the first and
the second time derivatives of speed and flux reference
signals are bounded. The simulation here shown has
been carried out with a value of the rotor resistance
equal to 200% of the nominal one.
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Fig. 2. Speed and rotor flux reference signals and load
torque profile in simulations.

6.2 Simulation results

The reference signals are indicated in Fig. 2, while the
controlled motor performances are shown in Fig. 3.
Fig. 4 reports, in a restricted time interval, both the
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Fig. 3. Speed and rotor flux modulus tracking errors.
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Fig. 4. The switching control input, i.e. the time
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measured currentia, showing the high harmonics
filtering.
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Fig. 5. Speed and flux modulus tracking performances,
and rotor resistance estimation, with the new
adaptive sensorless sliding mode observer.
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discontinuous waveform (phasea) of the control sig-
nal, and the stator currentia of the motor, thus letting
us appreciate the filtering action of the integrators, of
the current loop and of the same motor. Moreover,
the limit imposed on the time derivative of the stator
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estimation.
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Fig. 8. Speed and flux tracking errors and load torque
estimation during a zero speed test.

current (2000 A/s) does not to affect negatively the
speed regulation during load torque transients.

If the load torque is known, the adaptive sliding mode
speed and flux observer proves to be fast and accurate:
the previous analysis demonstrates that speed and flux
regulation seems not to be affected by the presence of
the observer in the control scheme. Fig. 5 shows that
the speed and flux modulus estimation performances
are satisfactory, even before that the convergence of
the rotor resistance estimation is verified, proving
good robustness of the speed and flux observer. Both
current and flux estimate errors are quickly steered to
zero, as shown in Fig. 6.

Fig. 7 shows the simulation results when the load
torque is unknown and the observer (28) is introduced
in the control scheme.

Excellent performances are highlighted in a zero
speed test too, a crucial benchmark for induction mo-
tor control algorithms (see Fig. 8).

7. CONCLUSIONS

In this paper a new Adaptive Sensorless Sliding Mode
Control algorithm for induction motors is proposed.
The control strategy sets a limit to the maximum value
of the time derivatives of the stator currents, assumed

as discontinuous control inputs, in order to prevent
excessive mechanical stress of the machine. The novel
Adaptive Sliding Mode Speed and Flux Observer,
based on a robust stator current estimation, provides
a fast and precise adaptation of both the mechanical
speed and the rotor resistance.
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