
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A MODEL-BASED APPROACH FOR USEWARE DEVELOPMENT 
 
 

Kizito Mukasa, Dirk Ziegeler, Detlef Zuehlke 
 
 

Institute for Production Automation, Center for Human-Machine-Interaction 
Kaiserslautern University of Technology 

D-67653 Kaiserslautern, Germany 
Phone: +49 631 205 3570 
Fax: +49 631 205 3705 

Email: [mukasa|ziegeler|zuehlke]@mv.uni-kl.de 
 
 
 

 
Abstract: The development of human-machine interfaces today is being challenged by 
the increasing number of interaction devices and multimodality. Developing for multiple 
devices but yet keeping consistency is unavoidable. Also integrating the future users in 
the whole development process is important for the final acceptability. Hence the 
development process is complex. This paper suggests a model-based approach. Aspects 
of the user interface should be defined in different models of different abstraction levels. 
This also requires a simple and domain based description language. For this purpose, a 
XML-based markup language called useML is also introduced. useML defines a simple 
syntax for the description of a platform-independent and task-oriented use model. 
Platform-specific interfaces and prototypes can be easily derived from the use model. 
Copyright © 2005 IFAC 
 

Keywords: user interface, prototyping, models, task orientation, objects 
 
 
 
 

 
1. INTRODUCTION 

 
The increasing number of platforms and functionality, 
the critical requirement to cut off development costs 
and at the same time increasing the usability of user 
interfaces requires a systematic approach. A number 
of solutions have been proposed including developing 
several versions of the same application for the same 
platform, using style sheets application and the 
model-based (MB-UID) approach (Szekely, 1996). 
The last solution is more comprehensive and has been 
a subject of research especially from the late 80s. The 
introduction of XML inspired new life in this field, 
due to the easy portability of interface descriptions. 
Nevertheless, proper implementation of MB-UID 
with XML is still a research issue. Identified 
problems include; high level of abstraction that makes 
the UIDLs too general and hence failing to meet 
domain specific requirements, lack of support tools, 
difficulties in integration and data exchange between 

the models, lack of application advice for developers, 
etc (see also Myers et al., 2000). Especially the first 
three are very critical problems and they are the 
subject of this paper. A model-based Useware 
development process is introduced together with an 
accompanying description language. Useware is a 
collective word for hardware and software necessary 
for operating a machine. 
 
 

2. THE USEWARE DEVELOPMENT PROCESS 
 
As highlighted in the introduction, Useware 
development requires a systematic approach. It 
consists of a phase based horizontal macro-process 
and a short and repetitive vertical micro-process that 
is embedded in each phase of the macro-process 
(compare Fig. 1). The micro-process includes the 
identification of inputs and outputs, and the activities 
required to transform the input into the output. As 

     



shown in Fig. 1 the macro-process consists of five 
overlapping phases that are linked to a continuous 
evaluation block; analysis, structuring, design and 
realization. 
 
Starting with the analysis phase, user tasks, their 
mental model, machine details, the working 
environment as well as the organization structure are 
colleted. Several data collection methods including 
interviews, direct observation of workers in the 
workspace and questionnaires should be applied, 
since any technique will only give partial information 
about the task (Wilson and Johnson, 1996). The 
results are documented in a preliminary task model 
 

OutputsOutputs

ActivitiesActivities

InputsInputs

Evaluation          

• task model
• Functions

Use model

Structuring

Analysis

• Users
• Machine
• Organization

Task model Useware

• user interface
• runtime environment

Realization

• use model
• Design rules

User interface

Design

OutputsOutputs

ActivitiesActivities

InputsInputs

Evaluation          

• task model
• Functions

Use model

Structuring

Analysis

• Users
• Machine
• Organization

Task model Useware

• user interface
• runtime environment

Realization

• use model
• Design rules

User interface

Design

OutputsOutputs

ActivitiesActivities

InputsInputs

Evaluation          

• task model
• Functions

Use model

Structuring

Analysis

• Users
• Machine
• Organization

Task model Useware

• user interface
• runtime environment

Realization

• use model
• Design rules

User interface

Design

 
 

Fig. 1 The Useware development process 

 
Structuring the preliminary task model follows the 
analysis phase. The previously defined existing task 
model and the machine functional model are the main 
input of this phase. 
 
First, the tasks are grouped into logical contexts that 
reflect their usage structure. Examples of contexts in 
the production automation domain are production, 
configuration, diagnostic and maintenance. Thus all 
tasks that are related to the production context, i.e., 
normal machine operation, are moved to this group. 
 
Then the tasks are hierarchically decomposed into 
sub-tasks. The decomposition terminates with actions, 
which can no longer be decomposed. This forms a 
tree like structure, with actions as leaves. After this 
decomposition, machine functions and related data 
that are needed for the internal completion of the task 
are attached to the corresponding action. User and 
location restrictions can also be specified, i.e., stating 
which user is allowed to perform which task and from 
which location or device. 
 
The resulting use model can be evaluated in terms of 
logical grouping, decomposition and other 
restrictions. It means, for example checking whether 
each task has been placed in the right context and if 
proper decomposition has been done. The use model 
is independent of the later implementation platforms. 
 
The design phase should logically follow the 
structuring phase. But the experience made is that 
there is some overlapping between the two. Therefore 

starting the interface design, i.e., making the use 
model accessible to the user machine user does not 
wait until structuring is completed. In fact, some 
“lose” design issues affect structuring. The size of 
display, for example, can constrain the number of 
contexts; the less the display, the fewer the number of 
elements per context group. 
 
As mentioned above, the main goal here is to make 
the use model accessible. First, the use model is 
transformed into an abstract user interface model by 
defining abstract user interface objects (aUIO) for the 
use objects. Objects for navigation and interaction, 
which basically have no corresponding use objects, 
are also defined. The aUIOs are then mapped onto 
platform dependent concrete user interface objects 
(cUIO) in a concrete user interface model (see the 
next sections for more details). 
 
The output of this phase is a prototype of the 
graphical user interface (GUI) that runs on the 
development computer. It can be evaluated with 
respect to layout, navigation and interaction. Any 
changes can be easily implemented before the GUI 
code for a target programming language is generated. 
 
Hard coding (programming) the GUI and 
implementing it on the target machine is the task of 
the last phase; realization. The platform also offers 
hardware capabilities, like for example switches and 
hard-keys, which can be linked to their corresponding 
cUIOs. This setup is the final product; the Useware. 
In the best case, the skeleton of GUI-code should be 
generated from the GUI Prototype of the previous 
phase. This is a long time goal of the author of this 
paper. 
 
 

3. USER INTERFACE MODELS 
 
Having described the development process, this 
section is dedicated to user interface models and 
objects, which are either inputs or intermediate 
outputs of the development activities. 
 
 
3.1 The preliminary task model 
 
The preliminary task model gives an overview of the 
user groups, their main contexts and all tasks together 
with the information or tools that user requires for 
accomplishing the task. No distinction is made 
between tasks that are direct interactions with the 
machine and those that are not. Fig. 2 shows an 
example of a preliminary task model. It has not been 
taken from any existing situation, but is used to 
demonstrate the concept. Some of the tasks of the 
operator are to monitor production during normal 
production and to assist the technician during 
maintenance. Monitoring involves watching 
parameters, adding raw materials as well as reading 
the manual. For this purpose, the user needs a 
parameter overview, a production plan and a manual. 

     



Assisting the technician involves fetching the tool 
box, holding the maintenance manual and cleaning 
the workspace after maintenance. The required tools 
have also been indicated. As it can be seen, this task 
is not directly related to the user interface. 
Considering the relevance of a task to the user 
interface is done in the development of the use model. 
 

User 
group Context Task/Goal Action

Information/ 
Tools

Operator Production
Monitor 
production watch parameter Parameter overview

add row material Production plan

read manual Manual

Maitanance
Assist 
technician fetch tool box Tool box

hold maintanance 
manual Manual

clean workspace Brush  
 

Fig. 2 An example of the preliminary task model 

 
 
3.2 The use model 
 
The task model has proven to be a good starting point 
for user-oriented interface development. This is 
because it captures user tasks and the way they are 
performed. Thus, making users the focus of the 
development. The preliminary task model is therefore 
the basis for the use model. 
 
The definition of this model is done by using useML.  
useML is an XML-based user interface description 
language. It was originally developed for the 
description of machine Useware (Reuther, 2003). The 
specialization enables proper addressing of domain 
specific requirements. The notation has been 
somehow modified as compared to (Reuther, 2003; 
Mukasa, 2004) to better fit task modeling. The main 
description elements are the use objects (UO) and the 
elementary use objects (eUO). While the UOs are 
logical equivalent to one or more related tasks, the 
eUOs are the elementary actions. A use object 
therefore expresses a general goal of one or more 
tasks. The useML elements and their relationships are 
indicated in Fig. 3. 
 

UseModel

elementaryUseObject

UseObject
1..*

0..*

0..*

command select edit manipulate inform

0..*

0..*1..*

 
 

Fig. 3 The main elements of useML 

 
This reduced UML class diagram indicates that a use 
model contains an unlimited number of UOs. Each 
UO can also contain an unlimited number of other 
UOs as well as eUOs. 
 
Normally, the UOs and eUOs in contained in a UO 
are not indexed. In this case, it is a collection of 
logically related UOs and eUOs. But if a UO contains 
only indexed eUOs, then it is a task and the sequence 
of the eUOs indicates a method of achieving the task 
goal. In this sequence, a eUO can be specified as 
optional, otherwise, it is mandatory. 
 
An elementary use object can be of type select, edit, 
manipulate, command or inform (see Fig. 3). These 
correspond to the actions of the machine user. 
• <select> 

By this action, the user can select one or many 
values from a set of values that already exist in 
the machine system. This selection can lead to 
changing a parameter in the machine control, for 
example, changing the unit of speed from km/hr 
to m/s, or to triggering a machine function, e.g., 
changing the machine operation modus from 
“automatic” to “manual” by selecting the 
required modus. 

• <edit> 
This involves input of one absolute data value 
into the machine system. Although the machine 
can suggest a default value, it will be overwritten 
by user input. The machine does not know the 
data value (other than the default one, if 
available) before user input. It means that the 
input comes from outside the system. An 
example of this interaction type is “enter the user 
name”. 

• <manipulate> 
This interaction is basically like edit. The 
difference is that the system provides a way of 
manipulating input relative to an existing value. 
This means that the data already exists in the 
system. For example the user can increment the 
speed from 15m/s to 17m/s by using a Toggle-
Wheel-Switch with 2 as an incrimination factor. 

• <command> 
This is an action where the user directly triggers 
a machine function; the user explicitly commits a 
command to a machine. This results into direct 
execution of machine functions. For example, 
starting the machine by “pressing” the start 
button. 

• <inform> 
Actions of the type inform involve the user 
querying the machine for some information. For 
example the user would like to know the status of 
the machine. It is a unidirectional action, 
meaning that no directly related action from the 
user is expected after viewing the information. 

 
The few useML elements are easy to handle and to 
use since they have a usage based notation. With 
useML, you just need to describe the tasks as they are 

     



performed. Consider Fig. 4 as an abstract example of 
some user tasks. The figure indicates which user 
group is allowed to perform which action, from which 
machine and at which location. Further, machine 
functions that are invoked be the actions are 
indicated. 
 

U
se

r 
G

ro
up

M
ac

hi
ne

L
oc

at
io

n

Fu
nc

tio
n

select time interval Supervisor all all T
get operating hours Supervisor all all hOp
get non production time Supervisor all all stopTime
get total output Supervisor all all Out
get output per day Supervisor all all dOut

get average output per hour Supervisor all all avgOut
get number of production 
interruptions Expert all all iCount
reset statistics Expert all local sReset

select time interval Supervisor all all T
get plant operation time Supervisor all all plantOp
get plant non opertation 
time Supervisor all all stopOp
get expected production Supervisor all all Pex
get plant eficiency Supervisor all all Peff

all all all M
Supervisor all local R
Operator all local Pr

all all all eTemp
all all all eP
all all all mTemp
all all local sP

get engine temperature
get engine power
get medium temperature
start sample production

Task/Interaction

select machine
change revolution speed
change production rate

View operating statistics

View plant statistics

 
 

Fig. 4 An example of user tasks and actions. 

 
Two main tasks can be identified; view operation 
statistics and view plant statistics. Taking the task 
“View operating statistics” as an example, we see that 
it has the following actions: 
1. select time interval, 
2. get operating hours, 
3. get non production time, 
4. get total output, 
5. get output per day, 
6. get average output per hour, 
7. get number of production interruptions and  
8. reset statistics. 
 
While the first six can be performed by the 
supervisor, at all machines and from any location, the 
last two are performed by the expert. The last action 
must be performed direct at the machine. 
 
During the action select time interval the user can 
select only one time interval for the statistics he needs 
to view. Possible values are; today, last day, last week 
and last month. As expected, this selection is modeled 
by the elementary use object <select> (see Fig. 5). 
The name of the elementary use object is derived 
from the interaction without the word select. Hence 
the elementary use object has the name Time interval. 
The attribute multiple_selection that is associated 
with this elementary use object has the value false 
indicating that only one selection is allowed. The 
default value of this selection is today as indicated by 
its attribute selected which have the value true. 
 

 
 
Fig. 5 A use model showing part of the task “View 

operating statistics” 
 
The use model is platform independent. Since it is 
XML-based, it can be easily treated with style sheets 
to provide prototypes for validating the structure. Fig. 
6 shows an example of two generated prototypes for a 
Web client and a PDA. The dynamic can be simply 
implemented with Java script. 
 

 
 
Fig. 6 Useware prototypes for Web client and PDA. 
 
Such prototypes do not only help the evaluation 
process, but also accelerate the decision making. 
 
 
3.2. The abstract user interface model 
 
After defining user tasks in a platform independent 
way, designing the user interface begins. While the 

     



use model describes the structure of user tasks and 
their relationships, the goal now is to identify abstract 
interface objects (aUIO) needed to perform the tasks 
and map them to their corresponding use objects from 
the use model. aUIOs are also known as abstract 
interaction objects (AIO) in other papers, for example 
(Szekely, 1996). Naming them user interface objects 
has an emphasis on the user interface and not on the 
interaction, since they are not necessarily interactive. 
 
The abstract user interface model is a central model 
for all concrete user interfaces running on different 
platforms. Besides defining aUIOs, it also saves the 
purpose of defining other aspects that should be 
common at all interfaces. For the example, the 
grouping of layout of objects, their behavior and the 
navigation structure. Having these aspects defined at 
one place helps to ease maintenance and supports 
consistence. 
 
The elements of the abstract user interface can be 
seen in a simplified UML class diagram of Fig. 7. 
 

information interaction

edit command select manipulate

userInterface

navigation
presentationUnit

1..*

0..*

group

abstractUserInterfaceObject
1..*

1..*1..*
1..*

0..*

1..*

 
 
Fig. 7 Elements of the abstract user interface 
 
The transformation of the use model into an abstract 
user interface model follows the following guidelines: 
1. starting from the root element, each use object is 

mapped onto a presentation unit. 
2. The connection between the use objects is stored 

in the navigation element. 
3. the elementary use objects are mapped onto 

abstract user interface objects. 
4. should there be need to group some eUOs, then 

the group element is used. 
 
After the transformation, a general layout for the 
presentation units can be defined. This might required 
considering hardware constraints like display size 
(remember the overlapping between the structuring 
and design phases). By applying special ergonomic 
design rules for machine user interfaces, the operation 
panel is divided into different areas, which will 
contain logically identical widgets. For example, 
there may be an area for navigation, for function keys 
and for data display (VDI/VDE, 2000). The data 
display area differs from the other two while it 
contains dynamic content. It is a main area where the 
user can view, enter or change data. The Display area 

can further be partitioned into message and status 
areas and an area for data input and output (see Fig. 
8). 
 

Navigation area

Function keys

Data Input and Out area

Message area Status area

D
isplay area

 
 
Fig. 8 An example of layout for a machine user 

interface. 
 
Diagrammatic prototypes like wire-frame mockups or 
abstract layout diagrams can be used in this phase 
(Constantine et al., 2003). Design can now proceed 
with the definition of the concrete user interface. 
 
2.4 The concrete user interface model 
 
Having defined the user interface in an abstract way, 
the next step is to map the user interface onto a 
concrete platform. Concrete interface objects that are 
supported by the goal platform are identified and the 
values for their attributes are specified. For example, 
their position on the display as well as their size. The 
decision is made according to the requirements 
contained in the abstract interface objects. It is 
important to mention that these are general usage 
requirements and not design rules/principles. It is left 
to the platform to find a way of meeting these 
requirements. Of course ergonomic rules have to be 
obeyed. 
Therefore, depending on the platform abstract 
interface objects are mapped onto specific interface 
objects according to the common design guidelines, 
for example, the type of object (selection, 
information, command, edit, manipulate), size of 
object and number of elements. An approach of 
implementing this mapping is shown in the 
TRIDENT Project (Bondart et al., 1994). 
 
 

4. RELATED WORK 
 
The model-based approach has found interest of 
many researchers. This has led to the rapid 
development of many solutions for user interface 
description languages. 
 
The User Interface Markup Language (UIML) is 
perhaps the most known XML-based UIDL. It 
provides platform independent elements for defining 
the user interface. The main elements are the 
<interface> that contains interface specific elements 
like <structure>, <content>, <style>, <behavior> and 
the <peers> (Abrams et. al., 1999). The <peers> 

     



element enables rendering the interface to a specific 
platform with platform specific toolkit. Though 
UMIL elements are platform independent, one needs 
platform knowledge in order to be able to define an 
interface for a specific platform. For example the 
developer must know if the structure he defines fits to 
the target platform. Therefore a UIML document is 
platform dependent. Also UIML does not support 
abstraction of tasks and description of common 
interface issues. These must be repeatedly defined for 
each platform, hence it is difficult to maintain and to 
keep consistence between descriptions. 
 
The eXtensible Interface Markup Language (XIML) 
provides a better solution. It defines necessary 
requirements for a universal user interface description 
language as well as its structure (Puerta and 
Eisenstein, 2004). It proposes a solution for 
standardizing the representation and manipulation of 
interaction data – the data that defines and relates all 
the relevant elements of a user interface. In so doing, 
XIML is rather a framework than a description 
language. The basic interface components suggested 
by XIML have some resemblances with the models of 
the MB-UID (Szekely, 1996); the task component 
corresponds to the task model, the domain component 
corresponds to the domain model, the user component 
to the user model, the presentation component to the 
presentation model and the dialog component to the 
dialog model. The XIML Framework extends this by 
explicitly modeling relations between elements and 
their attributes by using the relations and attributes 
representational units. Though it is a good idea to 
standardize the representation and manipulation of 
interaction data, a concrete XIML-based implantation 
of the framework could not be found (at least it was 
not included in the paper). It is therefore not clear 
whether XIML as a language really exists. 
 
Also, a number of model-based development 
processes can be found. The most recent that was 
found is TERESA (Mori et. al., 2004). It provides 
both a development process and a description 
language. Starting from a nomadic task model, 
several models must be defined. For each platform 
three different models, namely; a system task model, 
an abstract user interface model and a concrete user 
interface model must be defined. These many models 
are difficult to manage, especially when developing 
for multiple devices. 
 
 

5. CONCLUSION 
 
This paper has presented a systematic Useware 
development process accompanied with a model-
based approach as a solution for user interface 
development problems today. The process consists of 

overlapping phases with continuous evaluation. This 
can ensure maximum end user participation in the 
development process. 
 
Also the paper has pointed outs that a description 
language should be easy to use and capture domain 
specific aspects, if it has to find wide applicability 
within that domain. The paper has introduced useML 
as an example in the domain of production 
automation. It consists of five task based objects; 
select, edit, manipulate, command or inform. The 
useML based development makes it possible to 
specify the hardware and software of the interaction-
system in the late development stages, leaving the 
early development stages platform independent. In 
this way, the same use model can be tailored to any 
target platform. A tool to support the development 
process and useML is being developed. 
 

 

REFERENCES 
 
Abrams, M. et. al. (1999). UIML: An appliance-

independent XML user interface language. In: 
Proceedings of 8th International World-Wide 
Web Conference WWW'8. Mendelzon, Toronto. 

Bondart, F. et al. (1994). A Model-Based Approach 
to Presentation: A Cpntinuum from Task 
Analysis to Prototype. In: Proceedings Design, 
Specification and Verification of Interactive 
Systems, pp.77-94, Springer Verlag. 

Constantine, L. et al. (2003). From Abstraction to 
Realization: Canonical Abstract Prototypes for 
User Interface Design. Working Paper Vers. 2.0, 
http://www.foruse.com/articles/canonical.pdf.

Mori et. al. (2004). Design and Development of 
Multidevice User Interfaces through Multiple 
Logical Descriptions. IEE Transactions on 
Software Engineering, Vol. 30. 

Mukasa, K. and A. Reuther. (2004). The Useware 
Markup Language (useML) – Development of 
user-centered Interfaces using XML. In: 9th 
IFAC/IFIPS/IFORS/IEA Symposium on Analysis, 
Design, and Evaluation of Human-Machine 
Systems,  Atlanta. 

Puerta, A., and Eisenstein, J. (2004). XMIL: A 
Universal Language for User Interfaces, 
www.ximl.org/documents/XimlWhitePaper.pdf. 

Reuther, A. (2003). useML – Systematic Useware-
engineering with XML. Kaiserslautern University 
of Technology, Kaiserslautern. 

Szekely, P. (1996). Retrospective and Challenges for 
Model-Based Interface Development. In: 
Computer-Aided Design of User Interfaces, pp. 
xxi-xliv. 

VDI/VDE3850 Norm (2000). Nutzergerechte 
Gestaltung von Bediensystemen für Maschinen 
(user-friendly design of useware for machines). 

 

     


