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Abstract: In this paper repetitive learning control technique has been applied to the
position/flux tracking control of an Induction Motor (IM) under hypothesis of periodic
reference trajectory and uncertainties on the mechanical model. The electro-magnetic IM
model has been directly taken into account in the control development. Indirect Field
Oriented approach has been exploited and combined with control actions derived from
Lyapunov-like design. In order to compensate the periodic disturbances, the model of a
generic periodic signal with known period has been embeddedin the controller with a
suitable update rule. The convergence properties of the overall solution proposed have
been formally proven. Simulation results confirm the validity of the approach presented.
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1. INTRODUCTION

Periodic reference trajectories and mechanical uncer-
tainties cause unknown periodic disturbances in servo-
drives dynamics.
TheInternal Model Principlerepresents the basic idea
to solve the control problem of asymptotic tracking
under condition of unknown disturbances/trajectories
with known dynamic model (exosystem), without us-
ing high gain/large bandwidth approaches. TheRepet-
itive Learning Control(RLC) can be interpreted as
a formalization of the above-mentioned principle in
case of generic periodic references/disturbances with
known period. In particular, as reported in (Haraet
al., 1988), the adopted internal model is a closed-loop
time-delay system with delay T (in the continuous-
time framework) which is able to generate any peri-
odic signal with period T.
The RLC approach (or similar solutions as Betterment

Learning Control (Arimotoet al., 1984) or Iterative
Learning Control (Moore, 1999), (Hamet al., 2001),
(Xu and Tan, 2002)) has been widely used in ro-
botic applications to cope with mechanical uncer-
tainties leading to periodic disturbances (Horowitzet
al., 1991), (Dixonet al., 2001). Nevertheless, the elec-
tromagnetic dynamics of the adopted servo-drive has
been usually neglected.
In this paper, the case of Induction Motor (IM) servo
drives with mechanical periodic disturbances is con-
sidered. The IM electromagnetic dynamics has been
taken into account in the control design and the stan-
dard Indirect Field Oriented (IFO) solution has been
adopted as starting point (see for instance (Taylor,
1994), (Novotny and Lipo, 1996), (Leonhard, 2001) as
references on speed/flux control techniques for IM).
A position controller designed according to back-
stepping and robust control techniques has been de-



signed to ensure asymptotic tracking for the uncer-
tain dynamics without time-dependent disturbance.
Lyapunov-like design has been adopted to guarantee
stability in presence of state-dependent uncertainties.
A closed-loop time delay system with known delay
has been embedded in the controller with a suitable
update rule to cope with the periodic disturbances. A
current-fed IM has been assumed in this work.
The paper is organized as follows. In Section 2 the IM
model is recalled and the control problem is stated. In
Section 3 the proposed controller is reported and the
stability and convergence proofs are presented. Sim-
ulation results are reported in Section 4. Concluding
remarks are discussed in Section 5.

2. INDUCTION MOTOR MODEL AND
PROBLEM FORMULATION

Under assumptions of linear magnetic circuits and bal-
anced operating condition, the equivalent two-phase
electromagnetic model of the current-fed IM, ex-
pressed in the generic rotating reference frame (d-q),
is (Leonhard, 2001)

ψ̇d = −αψd + (ω0 − ω)ψq + αLmid

ψ̇q = −αψq − (ω0 − ω)ψd + αLmiq.
(1)

The mechanical model of the IM rotor shaft connected
to a generic 1-degree of freedom mechanical system is
expressed by the Euler-Lagrange equation (Ortegaet
al., 1998)

J(θ)ω̇ = − 1

2

∂J
∂θ

(θ)ω2 − b(θ)ω + µ(ψdiq − ψqid)
(2)

θ̇ = ω. (3)

In (1)-(3),ψd, ψq, ω, θ denote rotor fluxes, rotor shaft
angular speed and position respectively. According to
indirect field orientation approach (Novotny and Lipo,
1996) for current-fed IMs, control inputs are stator
currentsid, iq and the reference frame angular speed
ω0. Subscripts d, q stand for vector components along
the d and q reference frame axis respectively. Angular
position of the (d,q) reference frame with respect to
a fixed stator reference frame isε0, with ε̇0 = ω0.
Slip frequency is defined asω2 = ω0 − ω. Positive
constants related to IM parameters are defined asα =
Rr/Lr, µ = (3Lm)/(2Lr), whereRr is the rotor
resistance andLr, Lm are the rotor and magnetizing
inductances respectively. The equivalent total inertia
of the mechanical load is given byJ(θ), the equivalent
total linear viscous friction torque acting on rotor shaft
is b(θ)ω, IM torque is expressed byµ(ψdiq − ψqid)
and no load torque is assumed to be applied.

The following assumptions are introduced:

A1. Rotor position and speed are measured.
A2. IM electromagnetic parameters are constant and

known.
A3. Reference trajectories for positionθ and flux am-

plitude |ψ| =
√

ψ2
d + ψ2

q are known functions

θ∗(t) : R
+ → R andψ∗(t) : R

+ → R, with
bounded and known time derivativesθ̇∗, θ̈∗, ψ̇∗.
It holdsψ∗(t) > 0,∀t.

A4. θ∗, ψ∗ are T-periodic functions, i.e.θ∗(t) =
θ∗(t+ T ), ψ∗(t) = ψ∗(t+ T ),∀t.

A5. InertiaJ(θ) and its time derivatives areunknown
functions with the following known bounds:
there exist positive constantsJm, JM , kA, kB >
0 such thatJ(θ) ∈ [Jm, JM ],

∣

∣

∂J
∂θ

(θ)
∣

∣ ≤ kA,
∣

∣

∣

∂2J
∂θ2

(θ)
∣

∣

∣
≤ kB , ∀θ.

A6. Friction torqueb(θ)ω is an unknownfunction
with known positive boundskC , kD ≥ 0
such that|b(θ∗)ω∗ − b(θ)ω| ≤ kC |ω

∗ − ω| +
kD|ω

∗||θ∗ − θ|,∀ω∗, ω, θ∗, θ.

In learning control framework, time interval[0,∞)
can be partitioned into a sequence of finite intervals
[iT + 0, iT + T ], i = 0, 1, . . . , called learning trials,
over which the reference trajectory is periodic. In the
following, subscripti refers to evaluation of variables
over the i-th learning trail, i.e. with abuse of notation
for the generic variablex it holdsxi(t) = x(iT + t),
with t ∈ [0, T ], i ∈ [0,∞). Note thatxi(t − T ) =
xi−1(t). When no confusion arises, subscripti and
time-dependence are omitted for the sake of brevity.

Remark 1.Assumption A4 deals with the case of con-
tinuous repetition of the position reference trajectory,
with no stop of the process, which is a very common
task in motion control applications. Note that no reset
of state variables is applied at the beginning of learn-
ing trials.

Remark 2.The mechanical model is supposed to be
not perfectly known, which is a quite standard situ-
ation for complex mechanical kinematisms. Bound-
edness and Lipschitz-like assumptions are introduced
with A5 and A6. Note that assumption A6 is satisfied
in the case of linear friction torques/forces acting on
the mechanical system.
Due to mechanical uncertainties, feed-forward ac-
tions in the q-axis (torque) current cannot be intro-
duced to compensate for the desired torque obtained
through mechanical model inversion. On the other
hand, process repeatability can be exploited to design
a learning adaptation law for the compensation of the
unknown reference-dependent terms at each learning
trial. With respect to online parameter identification
techniques, the RLC approach allows to deal with
more general cases of unstructured uncertainties (e.g.
for friction forces, unmodelled nonlinearities).

Under assumptions A1-A6, the control objective is
to design a learning controller for the IM model (1)-
(3) which guarantees perfect tracking of position/flux
reference trajectories as learning trial tends to infinity,
i.e. limi→∞ θi(t) = θ∗(t), limi→∞ |ψi|(t) = ψ∗(t),
∀t ∈ [0, T ].



Remark 3.Applying field orientation strategy for vec-
tor flux control, requirement of flux amplitude track-
ing is equivalent to require thatlimi→∞ ψd,i(t) =
ψ∗(t) and limi→∞ ψq,i(t) = 0,∀t ∈ [0, T ] (perfect
field orientation).

3. POSITION/FLUX TRACKING LEARNING
CONTROLLER

The controller is composed by three main parts: an im-
proved indirect field oriented (I-IFO) controller for the
flux subsystem, a position tracking controller based
on backstepping and robust control techniques for the
mechanical subsystem and a learning-based adapta-
tion law for compensation of unknown and periodic
trajectory-dependent feed-forward terms. Based on di-
rect Lyapunov method, the I-IFO and position con-
trollers are designed in order to guarantee global expo-
nential stability of the “nominal” tracking error model,
i.e. considering state-dependent uncertainties but sup-
posing perfect compensation of reference-dependent
terms. Learning controller compensates for the peri-
odic time-dependent disturbance.

3.1 Flux control

The I-IFO controller is defined as

id =
1

αLm

(

ψ̇∗ + αψ∗ + νψ

)

ω0 = ω +
αLmiq
ψ∗

−
ν0
ψ∗
,

(4)

whereνψ, ν0 are auxiliary signals to be designed ac-
cording to Lyapunov-like technique in order to com-
pensate for torque/flux coupling terms. Defining flux
tracking errors as̃ψd = ψd − ψ∗, ψ̃q = ψq, from (1)
and (4) the flux error dynamics becomes

˙̃
ψd = −αψ̃d + ω2ψ̃q + νψ
˙̃
ψq = −αψ̃q − ω2ψ̃d + ν0.

(5)

3.2 Position control

Defining the position and speed tracking errors asθ̃ =
θ− θ∗, ω̃ = ω− ω∗, whereω∗ is the fictitious control
input for the position control loop, the backstepping
robust position tracking controller is designed as

ω∗ = θ̇∗ − k1θ̃

iq =
1

µψ∗

(

−k2ω̃ − k3θ̃ + ηq1 + ηq2

)

,
(6)

wherek1, k2, k3 > 0 are constant gains,ηq1 is the
additional robust control term andηq2 is the learning-
based control law. From (3), (2) and (6), the mechani-
cal error dynamics can be written as

˙̃
θ = −k1θ̃ + ω̃

J(θ) ˙̃ω = −k2ω̃ − k3θ̃ + µ(iqψ̃d − idψ̃q)+

+ ξ(θ̃, ω̃, t) + ηq1 − d(t) + ηq2

(7)

with

ξ = (J(θ∗) − J(θ)) θ̈∗ +
(

1

2

∂J
∂θ

(θ∗)θ̇∗2 − 1

2

∂J
∂θ

(θ)ω2

)

+

+
(

b(θ∗)θ̇∗ − b(θ)ω
)

+ k1J(θ)(−k1θ̃ + ω̃)

d = J(θ∗)θ̈∗ +
1

2

∂J

∂θ
(θ∗)θ̇∗2 + b(θ∗)θ̇∗

whereξ(θ̃, ω̃, t) is the unknown state-dependent term
to be compensated byηq1 and d(t) represents the
T-periodic unknown disturbance, which is dependent
on the reference trajectory only (and not on state
variables) and will be compensated byηq2.

Now, robust controlηq1 is designed.

Let e = (ψ̃d, ψ̃q, ω̃, θ̃)
T

and define the candidate
Lyapunov function

V (e, t) =
1

2

[

γ(ψ̃2
d + ψ̃2

q ) + J(θ)ω̃2 + k3θ̃
2

]

(8)

with constant parameterγ > 0. Designing auxiliary
terms of the I-IFO control as

νψ =
1

γ
(−µiqω̃), ν0 =

1

γ
(µidω̃), (9)

the time derivative ofV along trajectories of (5), (7) is

V̇ = −γα
(

ψ̃2
d + ψ̃2

q

)

− k2ω̃
2 − k1k3θ̃

2+

+ ω̃
(

1

2

∂J
∂θ

(θ)ωω̃ + ξ + ηq1 − d+ ηq2
)

. (10)

Note that from A5 it follows that|J(θ∗) − J(θ)| ≤
kA|θ

∗ − θ|,
∣

∣

∂J
∂θ

(θ∗) − ∂J
∂θ

(θ)
∣

∣ ≤ kB |θ
∗ − θ|, ∀ θ∗, θ.

From assumptions A5 and A6 it follows that
(

1

2

∂J
∂θ

(θ)ωω̃ + ξ(θ̃, ω̃, t)
)

ω̃ ≤ 1

2
kA|ω|ω̃

2+

+
(

kA|θ̈
∗| + 1

2
kB θ̇

∗2 + kD|θ̇
∗|
)

|θ̃| |ω̃|+

+
(

1

2
kA|ω̃ − k1θ̃| + kA|θ̇

∗|+

+ (kC + k1JM )
)

|ω̃| |ω̃ − k1θ̃|. (11)

Considering inequality in (11), the robust control law
ηq1 is designed according to nonlinear damping argu-
ment (Khalil, 1996, Section 13.1.2) as

ηq1 = −





1

ε1

(

kAω

4

)2

+
1

ε2

(

kAθ̈
∗

2

)2

+

+
1

ε2

(

kB θ̇
∗2

4

)2

+
1

ε2

(

kD θ̇
∗

2

)2

+

+
1

ε3

(

kA(ω̃ − k1θ̃)

4

)2

+

+
1

ε3

(

kAθ̇
∗

2

)2

+
1

ε3

(

kC + k1JM
2

)2



 ω̃, (12)

where ε1, ε2, ε3 are constant positive gains. Apply-
ing Young’s inequality2xy ≤ εx2 + y2/ε,∀x, y ∈
R,∀ ε > 0 to terms in (11), from (10) and (12) it
follows that



V̇ ≤ −γα
(

ψ̃2
d + ψ̃2

q

)

− k2ω̃
2 − k1k3θ̃

2 + ε1ω̃
2+

+ 3ε2θ̃
2 + 3ε3(ω̃ − k1θ̃)

2 + ω̃ (−d+ ηq2) . (13)

Choosingk1, k2, k3, ε1, ε2, ε3 such that the matrix
[

k2 − ε1 − 3ε3 3ε3k1

3ε3k1 k1k3 − 3ε2 − 3ε3k
2
1

]

is positive definite, (13) can be compactly rewritten as

V̇ ≤ −eTQe + ω̃ (−d(t) + ηq2) (14)

with matrix Q = QT > 0, hence the controller
ensures global exponential stability of the origin of the
“nominal” error model, i.e. withd(t) = 0.

3.3 Learning control law

Referring to the i-th learning trial, the learning control
law ηq2(t) = d̂i(t) is defined as

d̂i(t) = d̂i−1(t) − λω̃i(t), t ∈ [0, T ], i = 0, 1, . . .
(15)

whereλ > 0 is a constant tuning gain. Initial zero
conditions of the learning control law are assumed,
i.e. d̂−1(t) = 0,∀ t ∈ [0, T ]. Note that an equivalent
expression of the learning control law is

d̂(t) = d̂(t− T ) − λω̃(t), ∀t ∈ [0,∞).

The learning error is defined as̃d(t) = d̂(t) − d(t).
The following theorem states that the I-IFO control
combined with the backstepping robust mechanical
control and the learning-based adaptation law ensure
perfect tracking of position/flux trajectories over the
i-th periodT as the repetitions tend to infinity.

Theorem 4.The controller given by (4), (6), (9), (12)
with learning control law (15) and appropriate gain
selection (see Section 3.2) guarantees global expo-
nential position/flux tracking with bounded tracking
errorse ∈ L∞ andL2-norm bounded learning control
law d̂i ∈ L2 over each learning trial.

PROOF. Tracking convergence properties are ana-
lyzed in three steps: first, boundedness of errorse(t)
and d̃(t) over the first and second learning trials is
proven. Then, boundedness of tracking errore(t) for
each learning trial and its convergence to zero as learn-
ing trials tend to infinity is shown. Finally, it is shown
that the learning control laŵdi(t) is bounded inL2

norm over the i-th learning trial[0, T ], ∀i.

Boundedness ofe0(t), d̃0(t), e1(t), d̃1(t) ∀t ∈ [0, T ].
Consider the following candidate-Lyapunov function,
composed by the Lyapunov functionV (e, t) for track-
ing errore and theL2 norm of learning error̃d at the
i-th learning trial:

Ui(e, d̃, t) = Vi(e, t)+
1

2λ

∫ t

0

d̃2
i (τ)dτ , i = 0, 1, . . . .

(16)

Recalling (15) and initial conditions for̂d, it holds
d̂0(t) = −λω̃0(t). After substitutions in (14), time
derivative ofU0(t) at the first learning trial (i = 0)
is

U̇0 = V̇0 +
1

2λ
d̃2
0 ≤ −e0

TQe0−
λ

2
ω̃2

0 +
1

2λ
d2
0. (17)

Integrating (17) over the interval[0, t], with t ∈ [0, T ],
it holds U0(t) ≤ U0(0) + 1

2λ
d2
M t, wheredM is an

upper-bound ofd(t), i.e. |d(t)| ≤ dM , ∀t. Sinced(t)
is bounded andU0(0) is bounded,U0(t) is bounded
∀t ∈ [0, T ]. Hencee0(t) andd̃0(t) = −d0(t)−λω̃0(t)
are bounded∀t ∈ [0, T ].

For next developments, boundedness ofe1(t), d̃1(t),
∀t ∈ [0, T ] is proven. Noting that̃d1(t) = d̃0(t) −
λω̃1(t), following same considerations of (17) it fol-
lows that

U̇1 ≤ −e1
TQe1 −

λ

2
ω̃2

1 +
1

2λ
d̃2
0 (18)

and, sinced̃0 is bounded, it can be proven thatU1(t),
e1(t), d̃1(t) are bounded,∀t ∈ [0, T ].

Convergence of tracking errorei(t). In order to
prove boundedness ofei(t), ∀i, ∀t ∈ [0, T ] and its
asymptotic convergence to zero, the following Lya-
punov function is defined at the i-th learning trial,
∀i = 1, 2, . . . :

Wi(e, d̃, t) = Vi(e, t) +
1

2λ

∫ t

t−T

d̃2
i (τ)dτ . (19)

With respect toUi, a different interval of integration,
i.e. a shifting interval of lengthT , is considered. Note
that sincee1(t), d̃1(t) are bounded, it follows that
W1(t) is bounded∀t ∈ [0, T ].

Computing the difference ofWi(t) over two consecu-
tive periods it holds

∆Wi(t) = Wi(t) −Wi−1(t) =

= Vi(e, t)−Vi−1(e, t)+
1

2λ

∫ t

t−T

(

d̃2
i (τ) − d̃2

i−1(τ)
)

dτ .

Sinced̃i(t) = −d(t) + d̂i−1(t) − λω̃i(t), from (14) it
holds

Vi(e, t)−Vi−1(e, t) ≤ −

∫ t

t−T

(

ei
TQei + λω̃2

i

)

dτ+

+

∫ t

t−T

ω̃i(τ)(−d(τ) + d̂i−1(τ))dτ

and from (15) it holds

1

2λ

∫ t

t−T

(

d̃2
i (τ) − d̃2

i−1(τ)
)

dτ ≤

≤
λ

2

∫ t

t−T

ω̃2
i (τ)dτ−

∫ t

t−T

ω̃i(τ)(−d(τ) + d̂i−1(τ))dτ ,

hence it follows that

∆Wi(t) ≤ −

∫ t

t−T

(

ei
TQei + λ

2
ω̃2
i

)

dτ ≤ 0. (20)



The Lyapunov functionWk(t), t ∈ [0, T ], k ≥ 2 at
the k-th learning trial can be expressed as

Wk(t) = W1(t) +

k
∑

i=2

∆Wi(t) ≤

≤W1(t) −

k
∑

i=2

∫ t

t−T

(

ei
TQei + λ

2
ω̃2
i

)

dτ . (21)

SinceW1(t) is bounded,Wi(t) ≥ 0 and∆Wi(t) ≤ 0,
∀t ∈ [0, T ], ∀i, it follows thatWk(t) is bounded over
each learning cycle andW∞(t) = limk→∞Wk(t)
exists and is finite. Hence, tracking errore(t), ∀t is
bounded for each learning trial.

Taking the limit fork → ∞ of (21) it follows that

lim
k→∞

k
∑

i=2

∫ t

t−T

ei
TQeidτ ≤W1(t) − lim

k→∞

Wk(t),

hence, sinceeiTQei ≥ 0,
∑

∞

i=2

∫ t

t−T
ei

TQeidτ
converges and

lim
i→∞

∫ t

t−T

ei
TQeidτ = 0, ∀t ∈ [0, T ],

which implies thatei(t) −→ 0, ∀t ∈ [0, T ] as the
learning triali tends to infinity.

Learning control lawd̂i ∈ L2. Learning control law
d̂k(t) is bounded over finite learning trials since it can
be expressed aŝdk(t) =

∑k
i=0

(−λω̃i(t)), i.e. as the
sum of bounded functions̃ωi(t). Hence, finite escape
time of all internal variables is avoided. From (19) and
(21) with t = T and taking the limit fori → ∞ it
holds

0 ≤ lim
i→∞

1

2λ

∫ T

0

d̃2
i (τ)dτ ≤W∞(T ) ≤W1(T ).

Since W1(T ) is bounded,limi→∞

∫ T

0
d̃2
i (τ)dτ is

bounded. Hence, defining̃d∞ = limi→∞ d̃i, it fol-
lows that d̃∞ ∈ L2 over the interval[0, T ]. Since
d̃∞, d ∈ L2, it follows thatd̂∞ ∈ L2.

Remark 5.It has been shown that tracking errore is
point-wise bounded and tends to zero, guaranteeing
asymptotic position/flux tracking. Moreover, learning
control law d̂i ∈ L∞ for the i-th finite learning
trial and d̂∞ ∈ L2, from which it comes out that
control inputsid,i, iq,i,ω0,i ∈ L2 over each learning
trial [0, T ]. From a formal viewpoint, it is known that
there exist technical issues related to proof ofL∞-
boundedness of control law with learning control (see
also (Xu and Tan, 2002) and successive comments).

4. SIMULATION RESULTS

As an example, simulations of the proposed learning
controller have been performed for motion control
of the mechanism shown in Fig.1, in which the IM
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Fig. 1. Scheme of the mechanism.
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Fig. 2. Reference trajectories.

rotor shaft is connected to the rotational joint1 with
gear ratior, IM inertia isJm, slider mass ism, other
masses and inertias are supposed to be null,a, b are
link lenghts, withb > a. Kinematic relation between
slider positionx and IM rotor angleθ is x(θ) =

a cos (θ/r) +
√

b2 − a2 sin2 (θ/r). Total inertia is

J(θ) = Jm + m∂x
∂θ

(θ)2. Linear friction torquebωω
and forcebvẋ act on the rotor shaft and on the slider re-
spectively. Total friction torque on the IM rotor shaft is
expressed asb(ω, θ) =

(

bω + bv(∂x/∂θ)
2
)

ω. Known
parameters area = 0.25 m, b = 0.50 m, r = 10,
α = 10, Lm = 0.5 H, µ = 1.4. Unknown mechanical
parameters arem = 16 Kg, Jm = 0.005 Kg m2,
bω = 0.025 Nm/(rad/s), bv = 16 N/(m/s). Uncer-
tainty equal to±20% on each parameter is supposed
for tuning of controller gains.
After initial flux excitation phase, flux reference is
maintained constant atψ∗(t) = 1 Wb. The slider
position reference trajectoryx∗ = b− 0.9a cos (2πt),
with periodT = 1s, is required to be tracked. To this
aim, the IM motor is required to track the periodic
trajectoryθ∗(t) obtained through kinematic inversion
of x∗(t), assumingθ∗(t) > 0, ∀t. In Fig. 2 reference
trajectories are reported, while unknown disturbance
d(t) is shown in Fig. 3. Initial conditions of the IM
state variables areψd(0) = 0.96 Wb, ψq(0) = 0 Wb,
ω(0) = 0 rad/s, θ(0) = 26.2 rad, i.e. θ̃(0) = 1 rad.
Flux and backstepping controller gains are selected as
γ = 20, k1 = 5, k2 = 0.5, k3 = 5, while robust con-
trol ηq1 is designed based on bounds on uncertainties
onJ(θ) andb(ω, θ) and according to stability criterion
given in Section 3.2. Learning gain is set atλ = 0.1.

In Fig. 3 tracking errors, learning control laŵdi(t) and
control inputs are shown for learning trialsi = 0 and
i = 30 respectively. While during the first period large
position and flux errors are present, tracking errors
converge to zero as the learning trial increase, thanks
to the correct compensation of the unknown termd(t).
In order to evaluate the tracking performance, theL2

norm of the position tracking error over the i-th pe-
riod T , namelyΥi =

∫ T

0
θ̃i(τ)

2dτ , is used. In Fig. 4
the performance indexΥi is reported both in the case
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Fig. 3. Tracking errors, learning control̂di(t) and
control inputsid, iq for learning triali = 0 (solid
line) andi = 30 (marked line).
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Fig. 4. Performance indexΥi during learning trials
with learning controller (15) and withηq2 = 0.

of the learning controller and without compensation
of d(t), i.e. withηq2 = 0. With the learning controller,
tracking errorθ̃i(t) tends to0 after about30 periods.
On the contrary, withηq2 = 0 the error model is
an exponentially stable dynamics with bounded dis-
turbance, hence only ultimately boundedness of state
error variables is ensured thanks to feedback controller
(see also (14)). Large initial tracking error (fori = 0)
is due both to non-null initial conditions and to unper-
fect compensation ofd(t) during learning transient.
From a practical viewpoint, the robust controlηq1 de-
fined in (12) can be modified asηq1 = −kq1ω̃, with
sufficiently large constant gainkq1 > 0, in order to re-
duce the computational burden and without impairing
tracking performances.

5. CONCLUSIONS

Position/flux tracking control of current-fed IM under
hypothesis of periodic position reference and mechan-
ical uncertainties has been considered. The solution
proposed is based on: a) an improved IFO control
for torque/flux decoupling, b) a backstepping position
controller with additional robust terms to guarantee

stability in presence of state-dependent uncertainties,
c) a learning based adaptation law exploiting repeata-
bility of the position/flux trajectory in order to com-
pensate for unknown disturbance.
This work represents a preliminary result for more
complex and sophisticated controllers. In particular,
further researches will focus on learning control based
on backstepping technique for the voltage-fed IM.
Moreover, implementation issues, such as discrete-
time version of the controller, noise sensitivity and
robustness, will be tackled.
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