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Abstract: Semidefinite programs originating from the Kalman-Yakubovich-Popov lemma
are convex optimization problems and there exist polynomial time algorithms that solve
them. However, the number of variables is often very large making the computational time
extremely long. Algorithms more efficient than general purpose solvers are thus needed.
In this paper a generalized Benders decomposition algorithm is applied to the problem to
improve efficiency.Copyright c© 2005 IFAC
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1. INTRODUCTION

Semidefinite programs derived from the Kalman-
Yakubovich-Popov lemma (KYP-SDPs) are convex
optimization problems and have the following form

vopt = inf
x,P

cT x + Tr(CP ) subj. to

[

AT P + PA PB
BT P 0

]

+ M0 +

p
∑

k=1

xkMk > 0
(1)

whereA ∈ R
n×n, B ∈ R

n×m, P ∈ S
n andMk ∈

S
n+m, k = 0, 1, . . . , p. Notation Tr(·) denotes the

trace of the given matrix andSn is the set of symmetric
n×n matrices. We assume that the pair(A,B) is stabi-
lizable and thatA is Hurwitz. The second assumption
can be relaxed; details are given in Section 5. The
matrix C is negative semidefinite which is the usual
case in applications. There can be several constraints
of the above type, but for simplicity we only treat the
case with one constraint. A generalization is straight-
forward. Note that a standard LMI
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F = F0 +

p
∑

k+1

xkFk > 0

is a special case of the constraint (1) withn = 0.
Thus, in general, we can handle a mixture of KYP
constraints and standard LMIs.

KYP-SDPs are quite common in control and sig-
nal processing applications. The size of the SDP of-
ten gets very large, making it hard or even impos-
sible to solve with general purpose software. Some
interior point algorithms utilizing structure are pre-
sented in (Hansson and Vandenberghe, 2001; Wallin
et al., 2003; Vandenbergheet al., 2005; Gillberg and
Hansson, 2003). In this paper we apply a generalized
Benders decomposition to the KYP-SDP problem.
The generalized Benders decomposition is a popular
choice when the problem at hand is hard to solve,
e.g. due to nonconvexity, but decomposes into easier
problems if some of the variables are fixed (Geoffrion,
1972). One example of such a case is mixed integer
linear programming (Benders, 1962). However, the
KYP-SDP is already a convex problem and is thus
considered easy to solve. Our motivation for using a
generalized Benders decomposition is instead to lower
the computational complexity.



The generalized Benders decomposition can be con-
sidered as a cutting plane algorithm and work related
to what is presented in this paper can be found in
(Kao et al., 2004) and (Parrilo, 2001). It may seem
that KYP-SDPs are problems of a special form, but
they appear in numerous applications in control and
signal processing. A far from complete list of ap-
plications includes linear system design and analysis
(Boyd and Barratt, 1991; Hindiet al., 1998), robust
control analysis using integral quadratic constraints
(Megretski and Rantzer, 1997; Jönsson, 1996; Balakr-
ishnan and Wang, 1999), quadratic Lyapunov function
search (Boydet al., 1994), and filter design (Alkire
and Vandenberghe, 2002).

2. A GENERALIZED BENDERS
DECOMPOSITION

We have to make some assumptions about the KYP-
SDP in order to use a generalized Benders decompo-
sition. The assumptions are that there exists a feasible,
bounded, optimal solution(xopt, Popt), thatx ∈ D ⊂
R

p, whereD is a nonempty compact set and thatxopt

lies in the interior ofD.

2.1 Problem Reformulation

Let us first define the matrixM(x) and its partitioning
as

M(x) =

[

Qx Sx

ST
x Rx

]

= M0 +

p
∑

k=1

xkMk

the operatorF as

F(P ) =

[

AT P + PA PB
BT P 0

]

and the setX as

X = {x ∈ D : ∃P ∈ Sn : F(P ) + M(x) > 0}

This is the set of allx for which there exists a feasible
solution to (1). If we then separate the optimization in
x andP and for allx ∈ X define the function

h(x) = cT x + inf
P

Tr(CP )

s.t.F(P ) + M(x) > 0

we can write (1) as

vp = inf
x∈X

h(x) (2)

It is clear thatvopt = vp and that the optimal solution
x is equal for (1) and (2). Strong duality holds as
we are dealing with a semidefinite program and have
assumed that (1) is strictly feasible. Hence,h(x) can
be rewritten as

h(x) = cT x − sup
Z

Tr(ZM(x)), subj. to

AZ11 + Z11A
T + BZT

12 + Z12B
T = C

Z =

[

Z11 Z12

ZT
12 Z22

]

≥ 0

Let us define the operatorF∗ as

F∗(X) = AX11 + X11A
T + BXT

12 + X12B
T

and the setsZ andY as

Z = {Z : F∗(Z) = C,Z ≥ 0}

Y = {Z : F∗(Z) = 0, Z ≥ 0, Z 6= 0}

According to a theorem of alternatives (Balakrishnan
and Vandenberghe, 2002) we can express the feasible
set as

X = {x ∈ D : Tr(ZM(x)) > 0,∀Z ∈ Y} (3)

The epigraph formulation of (2) may now be written
as

vp = inf
x,q

q, subj. to










q − cT x + Tr(ZM(x)) ≥ 0, ∀Z ∈ Z

Tr(ZM(x)) > 0, ∀Z ∈ Y

x ∈ D

(4)

This problem is equivalent to (1). IfD is chosen to be
a polyhedron everyx ∈ D has to fulfil

bk − aT
k x ≥ 0, k = 1, 2, . . . , r

for someak and bk. Then, (4) is a linear program,
albeit with an infinite number of constraints. The idea
behind the generalized Benders decomposition is to
alternate between solving a master problem and solv-
ing a subproblem until anǫ-optimal solution is found.
The master problem has a finite number of constraints
and is an approximation of (4). The subproblem adds
new constraints to the master problem resulting in a
better and better approximation. The master problem
and the subproblem are described in Section 2.2 and
Section 2.3 respectively.

2.2 The Master Problem

The master problem at stageN is a linear problem

inf
x,q

q subj. to










q − cT x + Tr(ZkM(x)) ≥ 0, Zk ∈ Z, k ∈ VN

Tr(ZkM(x)) > 0, Zk ∈ Y, k ∈ FN

bk − aT
k x ≥ 0, k ∈ DN

(5)

whereVN , FN , DN are mutually exclusive, andVN ∪
FN ∪ DN = {1, 2, . . . , N}. Because (4) is approxi-
mated with a finite number of constraints the optimal
value of the master problem is a lower bound onvp.
The output of this linear program is a new trial point,
x̄. As the master problem accumulates information it
will produce a monotonically improving sequence of
solutions and bounds.

The first type of constraints in (5) are called value
cuts and the second type of constraints are called
feasibility cuts. The subproblem generates a new value
cut whenever the master problem produces a trial point
x̄ ∈ X and new feasibility cuts whenever the master
problem produces a trial point̄x /∈ X . The master



problem is initialized with the constraints describing
the polytope. We emphasize that the master problem
is a linear program however of growing complexity as
N increases.

2.3 The Auxiliary Problems

The purpose of the subproblem is to determine if a
trial point x̄ is in X and to generate cuts improv-
ing the approximation of (4). For the KYP-SDP the
subproblem itself can be divided into subproblems.
First, feasibility is checked. If the trial pointx /∈ X
feasibility cuts are generated and added to the master
problem. Otherwise, a value cut is added to the master
problem.

2.3.1. Requirements forx ∈ X We would like to
have some simple tests to see if a givenx is feasible.
To this end, let us introduce the quadratic matrix

Q(P, x) = AT P + PA + Qx

− (PB + Sx)R−1
x (PB + Sx)T

Using Schur complement on the constraint in (1) we
conclude that

[

AT P + PA PB
BT P 0

]

+

[

Qx Sx

ST
x Rx

]

> 0

⇐⇒ Q(P, x) > 0 and Rx > 0

(6)

A first requirement on a fixed, givenx ∈ D to be
feasible is thus thatR(x) is positive definite. When
R(x) > 0 andA has no eigenvalues on the imaginary
axisx̄ ∈ X if and only if the Hamiltonian matrix

H(x) =

[

A − BR−1
x ST

x BR−1
x BT

Qx − SxR−1
x ST

x −(A − BR−1
x ST

x )T

]

has no eigenvalues on the imaginary axis. See (Balakrish-
nan and Vandenberghe, 2002). Hence, we can check
feasibility of x by computing the eigenvalues ofRx

andH(x).

2.3.2. Generating feasibility cuts To check if the
matrix R(x) is positive definite or not we make an
eigenvalue decomposition of it. For every eigenvector,
vk, corresponding to a nonpositive eigenvalue,λk,
construct

Zk =

[

0
vk

]

[

0 vT
k

]

=

[

0 0
0 vkvT

k

]

Obviously,Zk is inY as

AZk11
+ Zk11

AT + BZT
k12

+ Zk12
BT = 0

Zk ≥ 0

Zk 6= 0

If the Hamiltonian matrix has an eigenvalue on the
imaginary axis,λ = iω we can construct aZk from
the eigenvectors,vk, corresponding to the nonpositive
eigenvalues,λk, of the matrix

G(x, ω) =

[

(iωI − A)−1B
I

]∗

M(x)

[

(iωI − A)−1B
I

]

This is similar to what is done in the proof of Propo-
sition 12 in (Balakrishnan and Vandenberghe, 2002).
Introduce

uk = (iωI − A)−1Bvk (7)

and

U =
[

Re(uk) Im(uk)
]

, V =
[

Re(vk) Im(vk)
]

From (7) we get

BV =
[

BRe(vk) BIm(vk)
]

(8)

=
[

−ωIm(uk) − ARe(uk) ωRe(uk) − AIm(uk)
]

We will show that

Zk =

[

U
V

]

[

UT V T
]

∈ Y

Using (8) we get

L(Zk) = AZk11
+ BZk12

= (AU + BV )UT

= (
[

ARe(uk) AIm(uk)
]

+
[

−ωIm(uk) − ARe(uk) ωRe(uk) − AIm(uk)
]

)UT

= −ωIm(uk)Re(uk)T + ωRe(uk)Im(uk)T

This yields

F∗(Zk) = L(Zk) + L(Zk)T

= −ωIm(uk)Re(uk)T + ωRe(uk)Im(uk)T

− ωRe(uk)Im(uk)T + ωIm(uk)Re(uk)T

= 0

The matrixZk is nonzero and positive semidefinite by
construction.

2.3.3. Generating value cuts When x is fixed to
x̄ ∈ X the KYP-SDP can be rewritten as

inf
P

Tr(CP ) subj. to
[

AT P + PA PB
BT P 0

]

+ M(x̄) > 0
(9)

To generate a value cut in the generalized Benders de-
composition we need the solution to the dual problem
of (9)

sup
Z

−Tr(ZM(x̄)) subj. to

AZ11 + Z11A
T + BZT

12 + Z12B
T = C

Z =

[

Z11 Z12

ZT
12 Z22

]

≥ 0

(10)

Solving this semidefinite program as it stands is not
a very good idea. It would be even more costly than
solving the SDP (1) as the number of variables is
larger. However, there is another, less computationally
heavy, way to obtain the solution. An optimal solution
to (9) is given by the maximal solution of the algebraic
Riccati equation (note,̄x is fixed)

Q(P, x̄) = 0

The maximal solution,Pr has the following properties

Pr > P ∀ P such thatQ(P, x̄) > 0

Ar = A + BFr is Hurwitz, where

Fr = −R−1
x̄ (PrB + Sx̄)T



This, together with the fact that the product of
two semidefinite matrices has nonnegative eigenval-
ues proves that the maximal solution will minimize
Tr(CP ).

Tr(C(Pr − P )) = −Tr(−C(Pr − P )) ≤ 0

Here the above inequality follows from−C ≥ 0 and
Pr − P > 0. This implies that Tr(CPr) ≤ Tr(CP )
for anyP such thatQ(P ) > 0. An optimal solution to
(10) is

Zk =

[

I
Fr

]

Zk11

[

I FT
r

]

whereZk11
solves the Lyapunov equation

ArZk11
+ Zk11

AT
r = C ≤ 0

The matrix Zk11
is positive semidefinite asAr is

Hurwitz. That Zk11
is positive semidefinite in turn

means thatZk ≥ 0. We also have that

AZk11
+ Zk11

AT + BZT
k12

+ Zk12
BT

= ArZk11
+ Zk11

AT
r = C

Hence,Zk is feasible. As we have assumed that the
primal is bounded from below and strictly feasible the
dual is optimal if and only if complementary slackness
holds (Ben-Tal and Nemirovski, 2001). This is true as

Zk

[

AT Pr + PrA + Qx̄ PrB + Sx̄

BT Pr + ST
x̄ Rx̄

]

=

[

I
Fr

]

Zk11
M

where

M =
[

I FT
r

]

[

AT Pr + PrA + Qx̄ PrB + Sx̄

BT Pr + ST
x̄ Rx̄

]

=

[

AT Pr + PrA + Qx̄ + FT
r (BT Pr + ST

x̄ )
PrB + Sx̄ + FT

r Rx̄

]

=

[

Q(Pr, x̄)
PrB + Sx̄ − PrB − Sx̄

]

= 0

The cost for solving the Riccati equation isO(n3)
compared to the cost for solving the dual problem
(10) which is at leastO(n6). Solving the Lyapunov
equation requiresO(n3) operations. Any feasiblēx ∈
X with a correspondingPr will give us an upper
bound onvp. Thus, every time we find an̄x ∈ X we
have to update the upper bound according to

new upper bound

= min(old upper bound, cT x̄ + Tr(CPr))

The algorithm is stopped when the difference between
the upper and lower bound is sufficiently small.

3. CENTERING AND OTHER IMPROVEMENTS

A proof for ǫ-convergence in a finite number of steps,
when a generalized Benders decomposition is applied
to a convex problem, is given in (Geoffrion, 1972).
However, in practice the convergence is too slow.
Measures can be taken to accelerate the convergence
though. In this section, we propose some possible
alternatives to improve the computational efficiency.

3.1 Interpretation as a Kelley’s cutting plane algorithm

The master problem which the Benders decomposition
algorithm solves in each iteration has the form (5). The
linear program (5) can be equivalently formulated as

inf
x

max
k∈VN

{cT x − Tr(ZkM(x))}, subj. to
{

Tr(ZkM(x)) > 0, Zk ∈ Y, k ∈ FN

bk − aT
k x ≥ 0, k ∈ DN

(11)

Comparing formulation (11) and the original problem
(2), one can see that the piece-wise linear function

q̄k(x) := max
k∈VN

{cT x − Tr(ZkM(x))}

serves as an approximation ofh(x) which supports
h(x) from below, and the constraints in (11) defines
a polyhedron which approximatesX . Hence, the Ben-
ders decomposition algorithm proposed in Section 2.1
is indeed another formulation of the Kelley’s cutting
plane algorithm. (See, for instance, (Boyd and Bar-
ratt, 1991)).

In the Kelley’s cutting plane algorithm, the minimizer
of q̄(x) over the polyhedral approximation of theX
is chosen as a candidate of the optimal solution of the
original problem. This method works well and con-
verges rapidly if (11) approximates (2) well. However,
convergence is often quite poor if this is not the case.
An alternative to the Kelley’s cutting plane algorithm
is the centering method.

3.2 Centering

In the centering method, a certain kind of center of
the polyhedral approximation of the feasible set is
computed in each iteration to serve as a candidate
for the optimal solution. To achieve good speed of
convergence, one should choose a center which not
only allows the algorithm to reduce the polyhedral
approximation significantly but also can be computed
efficiently. Among all possible centers, the analytical
center is a good choice for that purpose. LetPk be the
polyhedron approximation of feasible set at thekth

iteration, which is defined as

Pk = {x | di − cT
i x ≥ 0, i = 1, · · · , Nk}

The analytical center ofPk is the unique minimizer of

Lk(x) = −

Nk
∑

i=1

log(di − cT
i x)

over the interior ofPk.

The constraints in (5) can all be written on the above
form. Thus, instead of solving the master problem (5)
we solve the analytic center problem corresponding to
(5)

inf
x

Lk(x), subj. to

x ∈ Interior(Pk)
(12)

The analytic center problem can be solved efficiently
with, for example, methods described in (Ye, 1997).



3.3 Generating Feasibility and Value Cuts

Let xk be the solution (or an approximation of the
solution) of (12). Then checking whetherxk ∈ X ,
and generating a feasibility cut whenxk 6∈ X are done
exactly as proposed in Sections 2.3.1 and 2.3.2.

On the other hand, suppose thatxk ∈ X . Then an
alternative value cut can be produced as follows. We
note thath(x) is convex and differentiable onX . Let
∇h(xk) be the gradient ofh(x) atxk. Then we have

h(x) ≥ h(xk) + ∇h(xk)T (x − xk), ∀ x ∈ X (13)

This immediately gives a value cut: for thosex
in the half plane{x | ∇h(xk)T (x − xk) > 0},
h(x) ≥ h(xk) + ∇h(xk)T (x − xk) > h(xk).
Our task is to minimizeh(x). Hence, the half plane
{x | ∇h(xj)T (x − xj) > 0} can be ruled out, and
the polyhedron approximation forX is replaced by
Pk+1 := Pk ∩ {x | ∇h(xk)T (x − xk) ≤ 0}.

The gradient ofh(x) atxk can be computed using the
Zk in Section 2.3.3. More precisely, let∇ih(xk) be
theith element of∇h(xk). Then

∇ih(xk) = ci − Tr(ZkMi), i = 1, · · · , p (14)

To see this, recall that in Section 2.3.3, it is shown that
Zk is dual optimal. Therefore, with zero duality gap,
we have

cT xk − Tr(ZkM(xk)) = cT xk + inf
xk∈X

Tr(CP )

= h(xk)

This shows that the hyperplane

y = cT x −

p
∑

i=1

Tr(ZkMi)xi − Tr(ZkM0) (15)

passes through(xk, h(xk)). This supportsh(x) from
below and sinceh(x) is convex and differentiable,
there is only one such hyperplane at eachx which
is the tangent plane. Hence, (14) follows immediately
from comparing the right hand sides of (13) and (15).

3.4 Upper and Lower Bounds

Every feasible solution found give an upper bound
for the optimal solution of (2). Hence the smallest
upper bound is obtained by finding the minimum over
the set ofh values evaluated at the available feasible
solutions.

Lower bounds of (2) can be found, as we have seen
previously, by solving (5). However, a more efficient
way is to solve the dual of (5). The optimal objective
of the dual is equal to the optimal objective of (5), and
more importantly, any suboptimal feasible solution to
the dual problem will provide a lower bound. Thus,
we do not have to solve the dual problem exactly.

3.5 Further Unimplemented Improvements and Numerical
Issues

In (Goffin and Vial, 1999) other ways to accelerate
convergence of analytic center cutting plane algo-
rithms are described. Suggestions include

• Making duplicates of the value cuts. In the orig-
inal master problem this has no effect but for the
analytic center problem this results in an impor-
tance weight on the value cuts. The suggested
number of duplicates isp + 1.

• Warm start with the old analytic center as an ini-
tial guess of the new analytic center. Algorithms
for this can be found in (Ye, 1997).

If Rx̄ is close to being singular it is not recommended
to check if the Hamiltonian matrix has eigenvalues
on the imaginary axis. A much better choice, from
a numerical point of view, is to compute the finite
generalized eigenvalues of the pencil





0 A B
AT Qx̄ Sx̄

BT ST
x̄ Rx̄



 + λ





0 −I 0
I 0 0
0 0 0





which are the same as the eigenvalues of the Hamil-
tonian matrix. Also, the solution to the algebraic Ric-
cati equation can be obtained by computing a basis
for the stable deflating subspace of this pencil (Van
Dooren, 1981). None of this is yet implemented.

4. NUMERICAL EXAMPLE

SeDuMi (Sturm, 1999) is considered one of the best
general purpose solvers for semidefinite programs. To
see how well the analytic center cutting plane solver,
implemented in Matlab, performs we compare that
solvers computational time to the time used by Se-
DuMi interfaced through YALMIP (Löfberg, 2004).
We chose to vary the number of states,n, and a con-
stant number of inputs andx-variables,m = 5 and
p = 5. The matricesA, B C, M0, Mk and the vector
c are randomly generated and fulfil the assumptions.
The platform used is a SunBlade 100 workstation. Ten
problems of each size are generated and the results
are given in Table 1. We see that for a small number
of states SeDuMi has a slightly faster computational
time but for larger systems there is much to gain by
using the analytic center cutting plane method. The it-
erations were terminated when the difference between
the upper and lower bound was less than10−6.

5. RELAXING ASSUMPTIONS

The assumption thatA is Hurwitz is only used to
assure thatA has no eigenvalues on the imaginary
axis. SupposeA is not Hurwitz. As the pair(A,B) is
stabilizable we know that there exists anF such that
Ā = A + BF is Hurwitz. Define the full rank matrix

T =

[

I 0
F I

]



# of states mean time ACCPM [s] mean time SeDuMi [s]

30 30.06 22.58
40 44.12 96.43
50 48.68 323.77
60 98.79 903.68

Table 1. The mean computational time for the analytic centercutting plane method,
ACCPM, and SeDuMi for varying number of states.

Premultiplying the constraint (1) withTT and post-
multiply with T yields

inf
x,P

cT x + Tr(CP )

s.t.

[

ĀT P + PĀ PB
BT P 0

]

+ M̄0 +

p
∑

k=1

xkM̄k > 0

whereĀ = A + BF is Hurwitz and

M̄k = TT MkT, k = 0, 1, . . . , p

The solution(xopt, Popt) is the same as for the original
problem.
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