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Abstract: A whole variety of robust analysis and synthesis problems can be formulated
as robust Semi-Definite Programs (SDPs), i.e. SDPs with data matrices that are
functions of an uncertain parameter which is only known to be contained in some
set. We consider uncertainty sets described by general polynomial semi-definite
constraints, which allows to represent norm-bounded and structured uncertainties as
encountered in µ-analysis, polytopes and various other possibly non-convex compact
uncertainty sets. As the main novel result we present a family of Linear Matrix
Inequalities (LMI) relaxations based on sum-of-squares (sos) decompositions of
polynomial matrices whose optimal values converge to the optimal value of the robust
SDP. The number of variables and constraints in the LMI relaxations grow only
quadratically in the dimension of the underlying data matrices. We demonstrate the
benefit of this a priori complexity bound by an example and apply the method in
order to asses the stability of a fourth order LPV model of the longitudinal dynamics
of a helicopter. Copyright c©2005 IFAC
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1. INTRODUCTION

Many robust analysis and synthesis problems
can be translated into so-called robust Semi-
Definite Programs (SDPs). The modelling power
of this framework, in particular for robust opti-
mization and robust linear algebra is known for
long (Ben-Tal and Nemirovski, 2001; El Ghaoui
et al., 1999). It captures a large class of ro-
bust performance analysis and synthesis prob-
lems, such as in standard singular value theory
and considerable generalizations thereof (Packard
and Doyle, 1993), and stability and performance
analysis of Linear Parameter Varying (LPV) sys-
tems with quadratic-in-state Lyapunov functions
(Trofino and de Souza, 1999; Iwasaki and Shi-
bata, 2001).
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Robust SDP problems are variants of stan-
dard SDPs where the data matrices Fi(x), i =
0, 1, . . . , n, are functions of some parameter x that
is only known to be contained in some set ∆ and
the goal is to infimize cT y over all y ∈ R

n such
that F (x, y) � 0 for all x ∈ ∆, where

F (x, y) := F0(x) + y1F1(x) + . . .+ ynFn(x). (1)

For a large number of problems it can be assumed
that the data matrices Fi(x), i = 1, . . . , n are
symmetric p × p matrix-valued polynomial func-
tions (i.e. polynomials with matrix-coefficients)
and that the set ∆ is described by a polynomial
semi-definite constraint ∆ := {x ∈ R

N |G(x) 4

0}, where G is a q × q symmetric matrix-valued
polynomial. This brings us to the problem consid-
ered in this paper:

infimize cT y
subject to F (x, y) � 0

for all x ∈ R
m with G(x) 4 0

(2)



where F (x, y) is as in (1). Let us denote its optimal
value by popt. If F (x, y) is rationally dependent
on x, we can, under a well-posedness condition,
multiply by the smallest common denominator of
F (x, y) that is positive on ∆ to render the SDP
polynomial in x. In (Jibetean and De Klerk, 2003)
this technique is applied to problems with scalar
rational constraints. Complex-valued uncertainty
are reduced to real values in a standard fashion.

As an example of a problem that can be molded
into (2), consider the uncertain system ż(t) =
A(δ(t))z(t), where A(·) is a matrix-valued poly-
nomial and δ(·) varies in the set of continuously
differentiable parameter curves δ : [0,∞) 7→ R

m

with δ(t) ∈ ∆ for all t ∈ [0,∞). Consider for
instance the following combination of polytopic
and norm-bounded uncertainties ∆ := {p =
(

p1 p2

)T
: p1 ∈ R

m1 , p2 ∈ C
m2 , H(p1) ≤

0, ‖p2‖ ≤ 1} where H is affine. Then the system
is uniformly exponentially stable if there exists a
Y � 0 such that A(p)TY + Y A(p) ≺ 0 for all
p ∈ ∆. With x1 = p1, x2 = <(p2), x3 = =(p2),
y = vec(Y ), c = 0, G(x) = diag(H(x1), x

T
2 x2 +

xT
3 x3 − 1) and F (x, y) = diag(Y,−A(x)TY −
Y A(x)) this problem is of type (2), where < and
= denote real and imaginary part respectively and
diag denotes block diagonal augmentation.

In addition to robustness problems, the framework
of (2) includes polynomial Semi-definite Program-
ming (Hol and Scherer, 2004; Kojima, 2003) as a
special case. Since (2) is not a standard polyno-
mial SDP, the class of problems considered in this
paper is significantly larger.

Solving (2) is very difficult and various relaxations
have been proposed in the literature. The full
block S-procedure (Iwasaki and Shibata, 2001;
Scherer, 2001) allows to construct various relax-
ations, but in general it cannot be expected that
these relaxations are exact. We focus here on
a sequence of Sum-Of-Squares (sos) relaxations
that are asymptotically exact. Such schemes have
recently been applied to robust stability analysis
problems as described above (Chesi et al., 2003a;
Chesi et al., 2003b; Henrion et al., 2003; Scherer,
2003). These papers only consider polytopic un-
certainty sets. The uncertainty description in (2)
allows to describe many other sets, such as norm-
bounded and structured uncertainty as encoun-
tered in µ-analysis and various other possibly non-
convex compact uncertainty sets.

This paper presents asymptotically exact sos re-
laxations for (2), and is as such a natural ex-
tension of (Scherer and Hol, 2004) to robustness
problems with matrix-valued constraints. More
precisely the main novel result is the construction
of a sequence of sos polynomial relaxations of (2)

• that require the solution of standard Linear
Matrix Inequalities (LMI) problems whose
size grows only quadratically in the dimen-
sion p and q (i.e. the number of rows/columns)
of F and G respectively and

• whose optimal values converge from below
to popt if a certain constraint qualification is
satisfied.

A crucial concept in this construction is the ‘sum
of squares of polynomial matrices’, as will be
explained in Section 2. Based on this concept
and on scalar sos results (Jacobi and Prestel,
2001; Putinar, 1993; Lasserre, 2001; Parrilo and
Sturmfels, 2001), we will present a sequence of
sos relaxations for (2) with the desired properties
in Section 3. In Section 4 we demonstrate the
benefit of the a priori bound on the LMI size
by an example and discuss why straightforward
scalarisation of the matrix valued problem fails in
general to admit such bounds. Finally in Section
5 we apply the approach to stability analysis for
a fourth order LPV model of the longitudinal
dynamics of a helicopter.

2. SUM OF SQUARES OF POLYNOMIAL
MATRICES

A symmetric matrix-valued p× p-polynomial ma-
trix S(x) in x ∈ R

m is said to be a sum-of-squares
(sos) if there exists a (not necessarily square and
typically tall) polynomial matrix T (x) such that

S(x) = T (x)TT (x). (3)

If uj(x) j = 1, . . . , nu are pairwise different mono-
mials, then S(x) is said to be sos with respect to

monomial basis u(x) = col(u1(x), . . . , unu
(x)), if

T in (3) can be chosen as T (x) =
∑nu

j=1 Tjuj(x),

where Tj = TT
j ∈ R

p×p, j = 1, . . . , nu. To
compactly represent the sos decompositions we
define for M ∈ R

pq×pq, partitioned in blocks
Mi,j ∈ R

q×q, i, j = 1, . . . , p, the operator

Tracep(M) :=







Trace(M11) · · · Trace(M1p)
...

. . .
...

Trace(Mp1) · · · Trace(Mpp)






,

and for A,B ∈ R
pq×pq the bilinear mapping

〈A,B〉p = Tracep(A
TB).

If wj(x), j = 1, . . . , s, denote the pairwise different
monomials that appear in u(x)u(x)T one can
determine the unique symmetric matrices Zj with

u(x)u(x)T =

s
∑

j=1

Zjwj(x).

Using these definitions the following result reduces
the question of whether S(x) is sos with respect
to u(x) to an LMI feasibility problem.



Lemma 1. The polynomial matrix S(x) of dimen-
sion p is sos with respect to the monomial basis
u(x) iff there exist symmetric Sj with S(x) =
∑s

j=1 Sjwj(x) and the following linear system has
a solution W � 0:

〈W, Ip ⊗ Zj〉p = Sj , j = 1, . . . , s. (4)

IfW solves (4) then S(x) = 〈W, Ip⊗u(x)u(x)
T 〉p =

(Ip ⊗ u(x))TW (Ip ⊗ u(x)).

Tracep(·) satisfies the following easily verified
properties: for all A and B of appropriate size

Tracep((Ip ⊗B)A) = Tracep(A(Ip ⊗B)) (5)

and (Choi, 1975)

Tracep(A) � 0 for every A � 0, A ∈ Spq, (6)

for arbitrary p, q ∈ N.

3. MATRIX VALUED SOS DECOMPOSITION

Consider the optimization problem

infimize cT y
subject to

F (x, y) − εIp + 〈S(x), Ip ⊗G(x)〉p = S0(x)
S(x) and S0(x) are sos, ε > 0

(7)
with optimal value dopt. Note that the sizes of
S0(x) and S(x) are p× p and pq× pq respectively.
In this section we present our main result, which
shows that the optimal values of (2) and (7)
are equal if G satisfies a constraint qualification.
This result allows to construct an asymptotically
exact family of LMI relaxations of (2). Indeed,
by choosing fixed monomial bases u0(x) and u(x)
of the sos matrices S0(x) and S(x) respectively,
upper bounds on the optimal value of (7) can
be computed by solving an LMI problem, as
explained in the previous section. These upper
bounds converge to the optimal value of (7) if
the monomial basis vectors are infinitely extended
with new monomials.

Before discussing the main result let us first as-
sume that G is diagonal, i.e.

G = diag(g1(x), g2(x), . . . , gr(x)). (8)

Feasibility of y∗ for (2) comes down to computa-
tionally verifying whether

F (x, y∗) � 0 for all G(x) 4 0. (9)

The following theorem shows that this is possible
using a representation with matrix-valued sos
polynomials.

Theorem 2. Suppose G is as in (8) for some gi,
i = 1, . . . , r, and suppose the following constraint
qualification holds true: There exists some M > 0,
an sos polynomial ψ(x) and an sos matrix Ψ(x)
such that

M − ‖x‖2 + 〈Ψ(x), G(x)〉 = ψ(x). (10)

Then (9) implies there exist ε > 0 and matrix sos
S0(x), S1(x), . . . , Sr(x) such that

F (x, y∗) − εIp +

r
∑

i=1

Si(x)gi(x) = S0(x). (11)

Proof. The proof is a straightforward extension
of Theorem 2 in (Scherer and Hol, 2004) and
therefore omitted.

Now let us drop the assumption on G(x) being di-
agonal. This brings us to the central contribution
of this paper.

Theorem 3. Suppose there exist M > 0, an sos
polynomial ψ(x) and an sos matrix Ψ(x) such that
(10) holds true. If popt and dopt are the optimal
values of (2) and (7) respectively then popt = dopt.

Proof. We first prove popt ≤ dopt, by showing
that the constraint in (2) is implied by the con-
straint in (7). Consider arbitrary y∗ ∈ R

n and x∗
with G(x∗) 4 0. Let us now suppose that S(x)
and S0(x) = F (x, y∗) − εIp + 〈S(x), Ip ⊗ G(x)〉p
are sos. Due to (6) one infers

F (x∗, y∗) � F (x∗, y∗)−εIp+〈S(x∗), Ip⊗G(x∗)〉p � 0.

Since x∗ with G(x∗) 4 0 was arbitrary the
implication is shown which implies popt ≤ dopt.

To prove popt ≥ dopt note that, as a consequence
of the constraint qualification, if G(x) 4 0 is
replaced by

G̃(x) := diag(G(x), ‖x‖2 −M) 4 0

then the value of (2) is not modified. In a first step
of the proof of popt ≥ dopt, let us show that the
same is true for the sos reformulation (7).

Indeed suppose F (x, y)−εIp+〈S(x), Ip⊗G(x)〉p =
S0(x) with sos matrices S0(x) and S(x). If
we partition S(x) = (Sjk(x))jk into q × q-

blocks then S̃(x) := (diag(Sjk(x), 0))jk satisfies

〈S̃(x), Ip⊗G̃(x)〉p = 〈S(x), Ip⊗G(x)〉p and there-

fore F (x, y) + 〈S̃(x), Ip ⊗ G̃(x)〉p − εIp = S0(x).

Conversely suppose F (x, y) − εIp + 〈S̃(x), Ip ⊗

G̃(x)〉p = S̃0(x) with sos matrices S̃0(x), S̃(x).
Now we make explicit use of (10) with sos matrices
ψ(x), Ψ(x). Let us partition

S̃(x) =

((

Sjk(x) ∗
∗ sjk(x)

))

jk

into blocks of size (q + 1) × (q + 1) and define

S(x) := (Sjk(x)+sjk(x)Ψ(x))jk

and s(x) = (sjk(x))jk of dimension pq and p
respectively. It is easy to verify that both matrices
are sos and satisfy

〈S̃(x), Ip⊗G̃(x)〉p = 〈S(x), Ip⊗G(x)〉p−s(x)ψ(x).



This implies F (x, y) − εIp + 〈S(x), Ip ⊗G(x)〉p =

S̃0(x) + s(x)ψ(x) and it remains to observe that
S̃0(x) + s(x)ψ(x) is sos.

Therefore, from now on we can assume w.l.o.g.
that

vT
1 G(x)v1 = ‖x‖2 −M (12)

where v1 is the last standard unit vector. It
remains to show popt ≥ dopt, and for this purpose
it suffices to choose an arbitrary y∗ which is
feasible for (2) and to prove that y∗ is as well
feasible for (7).

Let us hence assume F (x, y∗) � 0 for all x ∈ ∆.
Choose a sequence of unit vectors v2, v3, . . . such
that vi, i = 1, 2, . . . is dense in the unit sphere
{v ∈ R

q : ‖v‖ = 1}. Define

∆N := {x ∈ R
m : vT

i G(x)vi ≤ 0, i = 1, . . . , N}

to infer that ∆N is compact (by (12)) and that
∆N ⊃ ∆N+1 ⊃ ∆ for N = 1, 2, . . . . Therefore
pN := min{λmin(F (x, y∗)) : x ∈ ∆N} is attained
by some xN and pN ≤ pN+1 for all N = 1, 2, . . ..
Let us prove that there exists some N0 for which
pN0

> 0 which implies

F (x, y∗) � 0 for all x ∈ ∆N0
. (13)

Indeed otherwise pN ≤ 0 for all N = 1, 2, . . .
and hence limN→∞ pN ≤ 0. Choose a sub-
sequence Nν with xNν

→ x0 to infer 0 ≥
limν→∞ λmin(F (xNν

, y∗)) = λmin(F (x0, y∗)). This
contradicts the choice of y∗ if we can show that
G(x0) 4 0. In fact, otherwise there exists a unit
vector v with δ := vTG(x0)v > 0. By convergence
there exists some K with ‖G(xNν

)‖ ≤ K for all ν.
By density there exists a sufficiently large ν such
that K‖vi − v‖2 + 2K‖vi − v‖ < δ/2 for some
i ∈ {1, . . . , Nν}. Since vTG(xNν

)v → vTG(x0)v
we can increase ν to even guarantee vTG(xNν

)v ≥
δ/2 and arrive at the following contradiction:

0 ≥ vT
i G(xNν

)vi =

= (vi −v)
TG(xNν

)(vi −v)+2vTG(xNν
)(vi −v)+

+ vTG(xNν
)v ≥

≥ −K‖vi − v‖2 − 2K‖vi − v‖ + δ/2 > 0.

We are now in the position to apply Theorem 2 to
(13) since, due to (12), the constraint qualification
is trivially satisfied. Hence there exist ε > 0
and polynomial matrices Ui(x) with p columns,
i = 1, . . . , N0, such that

F (x, y∗)− εI+

N0
∑

i=1

[Ui(x)
TUi(x)](v

T
i G(x)vi) (14)

is sos in x. With elementary Kronecker product
manipulations and (5) we conclude

[Ui(x)
TUi(x)](v

T
i G(x)vi) =

= Tracep

(

[Ui(x)
TUi(x)] ⊗ (vT

i G(x)vi)
)

= Tracep

(

([Ui(x)
TUi(x)] ⊗ vT

i )(Ip ⊗G(x))(Ip ⊗ vi)
)

= Tracep

(

([Ui(x)
TUi(x)] ⊗ viv

T
i )(Ip ⊗G(x))

)

= 〈(Ui(x) ⊗ vT
i )T (Ui(x) ⊗ vT

i ), Ip ⊗G(x)〉p.

With the sos polynomial matrix

S(x) :=

N0
∑

i=1

(Ui(x) ⊗ vT
i )T (Ui(x) ⊗ vT

i )

we infer that F (x, y∗) − εI + 〈S(x), Ip ⊗ G(x)〉
equals the left-hand side in (14) and is hence sos
in x. Therefore y∗ is feasible for (7).

Remark. The constraint qualification can be
equivalently formulated as follows: There exist sos
polynomials s0(x), S(x) such that

{x ∈ R
m : Trace(S(x)G(x)) − s0(x) ≥ 0}

is compact.

Theorem 3 is a natural extension of a theorem
of Putinar (Putinar, 1993) for scalar polynomial
problems in two directions:

• the set G(x) 4 0 is described by matrix-

valued instead of a scalar polynomials;
• a sos representation of the matrix-valued

(instead of scalar) polynomial F (x) is ob-
tained.

If the variable y is absent, F is scalar and G is
diagonal as in (8), Lasserre’s approach (Lasserre,
2001) for minimizing f(x) over scalar polynomial
constraints gi(x) ≥ 0, i = 1, . . . , r is recovered.
Moreover the constraint qualification in Theo-
rem 3 is a natural generalization of that used
by Schweighofer (Schweighofer, 2003) for scalar
polynomial optimization problems.

4. COMPARISON WITH SCALARIZATION

In this section we shed some light on the benefits
of exploiting the matrix structure in the sos relax-
ations compared to straightforward scalarisation.
In particular we explain why scalarisation fails
to lead to the desired properties (of quadratic
growth in the matrix sizes) of the correspond-
ing LMI relaxations. Observe that G(x) 4 0 is
equivalent to Mi(G(x)) ≤ 0, i = 1, . . . , r where
Mi(A), i = 1, . . . , r are all the principal minors of
a matrix A ∈ R

q×q (Horn and Johnson, 1985).
Hence if we define f(v, x, y) := vTF (x, y)v and

hi(v, x) = Mi(G(x)) i = 1, . . . , r,

hr+1(v, x) = 1 − vT v, hr+2(v, x) = vT v − 2,

then (2) is equivalent to infimizing cT y subject to

f(v, x, y) > 0 for all (x, v) (15)

with hi(v, x) ≤ 0 i = 1, . . . , r + 2. If hi, i =
1, . . . , r + 2 satisfy a constraint qualification then



the scalar results of Putinar (Putinar, 1993) (15)
imply that there exist sos polynomials si(v, x),
i = 1, . . . , r + 2, such that

f(v, x, y) +
r+2
∑

i=1

si(v, x)hi(v, x) is sos. (16)

However, although f(v, x, y) and hi(v, x) are
quadratic in v, no available result allows to guar-
antee that the sos polynomials si(v, x), i =
1, . . . , r+ 2, can be chosen quadratic in v without
loosing the relaxation’s exactness. Without such a
priori degree information, the corresponding LMI
relaxation size needs to grows fast in the length
of v which equals the dimension of F (x, y). The-
orem 3 implies that one can indeed confine the
search to sq+1(v, x) = 0, sq+2(v, x) = 0 and to
sj(v, x) = vTSj(x)v, j = 0, 1, . . . , q, which are
homogenously quadratic in v, without violating
popt = dopt.

Regarding the matrix-valued constraint polyno-
mial G(x), the maximum of the total degrees
of the minors Mi(G(x)), i = 1, . . . , r is at least
as high as the total degree of G(x) and will
in practice often be higher. A larger polynomial
degree often requires to use a larger monomial
basis and hence more variables and constraints
in the LMI relaxation to obtain good approxima-
tions of popt. This is illustrated by the following
example (inspired by a personal communication
with Didier Henrion): Computate lower bounds on

popt = infG(x)40 F (x) where x =
(

x1 x2

)T
∈ R

2,
F (x) = x1 + x2 and

G(x) =







1 x2
1 0

x2
1 9 − x2

2 0

0 0 1 −
x2

2 + x2
1

100






.

Table 1 shows lower bounds on the optimal value
and the sizes of the LMI problems for sos re-
laxations based on (7) and based on two ways
of scalarisation, where we used for “Scalar 1”
g1(x) = det(G(1 : 2, 1 : 2)), g2(x) = Trace(G(1 :
2, 1 : 2)) and g3(x) = G(3, 3) and for “Scalar 2”
the minors gi(x) := Mi(G(x)) ≤ 0, i = 1, . . . , 7.
We choose monomial bases u0(x) as shown in
the table and ui(x) = 1, i = 1, 2, . . . respec-
tively to represent Si(x), i = 0, 1, 2, . . . as in
Lemma 1. An upper bound on the optimal value
popt is F (−1.148,−2.695) = −3.843, which was
obtained by gridding. As is clear from the ta-
ble, the matrix-valued relaxation is (almost) ex-
act for u0 = (1, x1, x2)

T , obtained by LMI op-
timization with 18 constraints and 13 variables.
The scalarised relaxations are exact if u0 =
(1, x1, x2, x

2
1, x1x2, x

2
2)

T , which required the solu-
tion of an LMI problem with 27 constraints and 16
variables. The table shows that “Scalar 2” requires
even more LMI variables to obtain close to exact
results.

Relax- optim. monomial in LMI LMI

ation value u0(x)T constr vars

Matrix -3.85 (1, x1, x2) 18 13

Scalar 1 -12.65 (1, x1, x2) 16 10

Scalar 1 -3.85 (1, x
T

, x1x
T

, x
2

2
) 27 16

Scalar 2 -2.6e4 (1, x1, x2) 29 14

Scalar 2 -3.85 (1, x
T

, x1x
T

, x
2

2
) 48 29

Table 1. Optimal values and LMI size
for matrix and scalar relaxations

5. APPLICATION

We consider the stability analysis of an LPV
model of a closed-loop Vertical TakeOff and Land-
ing (VTOL) helicopter (Gahinet et al., 1994;
Iwasaki and Shibata, 2001). The linearized longi-
tudinal dynamic equations of the helicopter, after
applying a static feedback law as in (Iwasaki and
Shibata, 2001), are ż = A(p)z where

A(p) =









−0.0366 −0.096 0.018 −0.45
0.0482 a3(p) 0.0024 −4.02
0.10 a1(p) −0.707 a2(p)
0 0 1 0









and a1(p) = 14.0 + 0.05p1, a2(p) = 1.42 +
0.01p2 and a3 = −18.2− 0.0399p3. We analyze its
stability for all uncertainties satisfying ‖p‖ ≤ γ
and |ṗk| ≤ ρ, k = 1, 2, 3 for fixed values of γ and
ρ. We consider affine Lyapunov functions P (p) =
∑4

i=1 Pimi(p) where m(p) = (1, p1, p2, p3). Then
the system is robustly stable if there exist Pi =
PT

i ∈ R
4×4, i = 1, . . . , 4 such that

A(p)TP (p) + P (p)A(p) +
3

∑

k=1

∂A(p)

∂pk

qk ≺ 0

for all ‖p‖ ≤ γ and all |qk| ≤ ρ, k = 1, 2, 3.

Hence with the definitions x :=
(

pT qT
)T

, y :=
(

vec(P1), . . . , vec(PN )
)T

,

F (x, y) := A(p)TP (p) +P (p)A(p) +

3
∑

k=1

∂A(p)

∂pk

qk,

G = diag (g1, . . . , g4), g1(x) := ‖p‖2 − γ2 and
g1+i(x) := |qi| − ρ i = 1, 2, 3, feasibility of y in
(2) implies robust stability.

We compute sos relaxations of (2) with sos bases
u0(x) =

(

1 x
)

and ui(x) = 1, i = 1, . . . , 4. Figure
1 shows the results. Note that the results can
not directly be compared with those in (Iwasaki
and Shibata, 2001), (Gahinet et al., 1994) and
(Montagner and Peres, 2003), since we consider
a norm-bounded instead of a polytopic set and
the relaxations in those reference can only be
applied to polytopic sets. This illustrates the
additional flexibility of our framework, since it can
be applied to any uncertainty set that admits a
polynomial SDP description. For comparison, we
also computed bounds for the polytope |pk| ≤ γ,
k = 1, 2, 3 together with |ṗk| ≤ ρ, k = 1, 2, 3
and compared them to the results of (Gahinet et

al., 1994). The figure shows that the resulting γ
values are similar.
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