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Abstract: This paper deals with the dynamic modelling of a vibratory asphalt
compactor. A compactor is a machine of road building site. Its task is to increase
the density of the asphalt. The aim of the study is to measure contact forces
wrenches between the drums of the compactor and the bituminous mix. These
drums vibrate. Traditional techniques of robotics are used to model the compactor
as an articulated mechanical system. In order to reach our objective, the dynamic
model is limited to the clamp-drum unit. Moreover, this model is adapted to our
system of measurements by replacing some lagrangian variables by some Euler
variables. In this manner, it is proved that it is possible to get the contact forces
wrench. During a real worksite, it has been possible for the first time to measure
the contact forces applied by a compactor. Copyright© 2005 IFAC.
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1. INTRODUCTION

In road construction, material is spread then
compacted. Compacting is a critical task of
this process, guarantees lifetime of the road. To
achieve this task, a worksite machine is used : a
vibratory asphalt compactor (Fig.1). Compaction
is achieved by the operating weight and the vibra-
tory system of the machine. Now, a reliable, real-
time system to control asphalt compaction does
not exist when they are top courses of the road.
A modelling of a compactor as an articulated
mechanical system without vibration (Guillo et
al., 1999) enables us to develop a low-cost system
(Lemaire et al., 2003) to measure the rolling resis-
tance (Delclos et al., 2001). In this paper, a further
modelling witch take into account vibration is pre-
sented. With this model, it is possible to measure
contact forces wrenches applied by the compactor

to asphalt in 2D. To carry out this measure, a
complete model of the compactor is not necessary,
a drum model is enough, with the hypothesis of
plan motion of the compactor which is adequate
to considered applications. The dynamic model is
based on a geometric modelling. The first part of
this article deals with geometric modelling of the
compactor. The second part describes the tradi-
tional calculation of dynamic model. In the third
part, this modelling is adapted to the case of the
compactor in the objective to know contact forces
wrench.

2. GEOMETRIC DESCRIPTION OF THE
COMPACTOR

In this part, the geometric model of a typical com-
pactor -Caterpillar CB544 (Fig. 1)- is described.



Fig. 1. A typical compactor: Caterpillar CB544

We consider in the elements that link the chassis
- or main body - to the ground. The compactor is
then composed of:

e the chassis

e the steering system

e the two drums, each drum is composed of two
half-drum and a circular exciter system

This description makes use of the most influent
degrees of freedom characterizing the compactor
dynamics. These degrees of freedom are modeled
according to the modified Denavit and Hartenberg
(MDH) notations (Khalil and Dombre, 2002), it
leads to the geometric model. The second part
connects this complex model to the principal
degrees of freedom of the compactor.

2.1 geometric model

The compactor is considered as a multi-body
tree structure, with n bodies, where the half-
drums represent the terminal links. Each body
Bj is linked to its antecedent with a joint which
represents an elementary degree of freedom either
a translational or a revolute, the joint can be
rigid or elastic. A body (or a link) can be real
or virtual, the virtual bodies are introduced to
describe complex joints or projection frames. We
define a reference frame R; (with origin O; and
main axes z; , y; , z;) attached to each body B;.
The z; axis is defined along the axis of joint j.
The axis uy is defined along the common normal
between z; and 2, where link j is the antecedent
of link k, denoted by j = a(k). The z; axis is
defined arbitrarily along one of the axes uy, with
a(k) = j. The (4 x 4) homogenous transformation
matrix iTj between two consecutive frames R; and
R;, with ¢ = a(j) is defined with the following six
parameters (Khalil and Dombre, 2002) (Fig.2):

e ; : angle between x; and u; around the axis
Ziy
e b; : distance between x; and u; along z;,

Fig. 2. The geometric parameters

e o : angle between z; and z; around the axis

e d; : distance from z; to z; along u;,
e 0; : angle between u; and x; around the axis
Zj,

e 7; : distance from u; to z; along z;.
When z; is taken along u;, the parameters «y; and
b; are equal to zero. This is always the case for
all the frames of serial robots. The homogenous
(4 x 4) transformation matrix *T; between frames
i and j is given as:
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Where:

e ‘A, is the (3 x 3) orientation matrix of frame
j with respect to frame i,

e P;is the (3 x 1) vector defining the origin of
frame j with respect to frame i

o Cz = cos(x) and Sz = sin(x)

The generalized coordinate of joint j is denoted
gj , it is equal to r; if j is translational and 0; if
j is revolute. It can be written by the following
relation: ¢; = o;7; + 0;0; where o; = 1 if joint j
is translational, and o; = 0 if joint j is revolute,
G; = 1 — o0;. If there is no degree of freedom
between two frames; fixed with respect to each
other, we take o; = 2, it means that the time
derivative of g; is zero.

According to this formalism, the geometric de-
scription of the compactor is given by Fig.3. The
parameters of the geometric description are given
by Table 1. The explanation of this modelling is
the object of the following paragraphs.
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Fig. 3. Tree structure of the compactor

Table 1. Geometric parameters of the

compactor

iom o op ey v by ooy dp 8
1 0o 1 0 0 0 3 0 3 a
2 0 1 1 o0 o % o %

3.0 1 2 0 0 % 0 0 Zj
4 0 0 3 0 0 0 0 @ O
5 0 0 4 0 0 -3 0 g O
6 0 0 5 0 0 -3 0 g O
7 1 0 6 0 0 —% 0 g 0
8 0 1 7 0 0 0 0 0 g
9 0 1 8 0 0 T 0 I g
o 0o 0 9 0 0 I 0 qo -%
m 0o o 9 o0 0 Z 0 g1 Z%
2 1 0 1 0 0 0 0 q2 O
3 1 0 11 0 0 0 0 @3 O
4 1 0 10 0 0 0 0 qa O
5 1 0 6 0 D -Z 0 @5 O
6 0 0 15 0 0 % 0 qe O
7 0 1 16 0 0 -3 0 0 aqr
8 0 1 17 0 0 Z 0 I qs
9 0 o0 18 0 0 % 0 qo -2
20 0 0 18 0 0 I 0 qo 2%
20 1 0 19 0 0 0 0 gu O
22 1 0 2 0 0 0 0 g2 O
23 1 0 20 0 0 0 0 g3 O

2.2 study of the degrees of freedom of the compactor
In this paragraph, the figure 3 is explained ac-

cording to the main degrees of freedom of the
compactor.

Motions of the drums with respect to the chassis

e each half-drum turns around its axis (joints
12,13 and 21,22),
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the circular exciter system turns around its
axis (joints 14 and 23),

each drum (made up of the two half-drum
and one circular exciter system) is suspended
by silent blocs - with four degrees of freedom -
to a clamp (joints 8,9,10,11 and 17,18,19,20),
the back clamp is articulated with respect to
the frame by a revolute joint(articulation 7),
the front clamp is articulated with respect
to the frame by two revolute joints, to the
steering motion is added a pendular motion
to compensate for the warping of the ground
(joints 15 and 16).

Motions of the chassis with respect to ground
The compactor motion with respect to ground
is described by three translations and three rota-
tions degrees of freedom which are called (Figure

3):

longitudinal translation (joint 1),

lateral translation (joint 2),

vertical translation (joint 3),

yaw, rotation around the vertical axis (joint
1,

pitch, rotation around the transversal axis
(joint 5),

roll, rotation around the longitudinal axis
(joint 6),

3. DYNAMIC MODELLING

From the geometric model, we can ccompute a
dynamic model. We describe this step because we
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present in the following section, which adaptation
was carried to the method to fulfill our objective:
to measure the contact forces wrench.

The description of dynamic modelling needs the
presentation of the parameters associated with
each body. In the continuation, we will need to
distinguish two types of formalisms: Lagrangian
formalism and Newton-Euler formalism. The dy-
namic model is then described. The effective cal-
culation of this dynamic model is based on the
equations of Newton-Euler. It is the object of the
last paragraph of this part.

3.1 Dynamic parameters

A set of ten inertial parameters is associated with
each real body B; , it consists of:

e the mass M;

e the 6 components of the inertia matrix J;
given in Frame R;, they are denoted by X X;
XY; XZ; YY; YZ; ZZ;

e the first moments parameters MX; MY
M Z; with respect to frame R;

When there is an elastic joint between R; and R;
it is necessary to define some elastic parameters:

o the stiffness k; of the joint
e the damping coefficient h;
e the Coulomb coefficient fs;

The vector of standard dynamic parameters Xs
is composed of the previous parameters of all the
links.

3.2 Formalisms

In general, the dynamic model is expressed with
the Lagrange formalism and/or the Newton-Euler
formalism. The Lagrange formalism expresses the
movement of each body in terms of the joint
generalized coordinates q = [q1---qn]7, its first
and second derivatives, the external wrenches ap-
plied on the system F, and the vector of dynamic
parameters Xg. It is given by:

f(a,4,G, Fe, Xs) =0 (2)

The Euler formalism expresses the movement of
a body with its rotational speed, rotational accel-
eration, translational acceleration and the current
position [w,w, Vv, ®]. It can be written as:

f(waw7vaq)7F67XS):O (3)

3.8 The Lagrange dynamic model

The inverse dynamic model is obtained with the
following general equation:

I+Q=T4+T"+A(q)i+C(q,9) (4

Where:

e I' is the joint forces or torques vector,

e () is the vector of generalized efforts repre-
senting the projection of the external wrenches
on the joint axes, it is calculated with:

Q= -2J] ())Fe; (5)

o J;(g) is the Jacobian matrix of frame R,

e F.; is the external wrench (forces f.; and
moments m.;) applied by body B; on the
environment,

I'/ is the friction force,

I'® is the joint elastic force,

A(q) is the inertia matrix of the system,
C(q,q) is the vector of Coriolis, centrifugal
and gravity forces.

The j*" element of I'®, is written as:

e I'C = kjg; if j is an elastic joint, with g; the
joint coordinate with respect to the original
position and k; the stiffness of joint j,

e I'C = 01if j is not an elastic joint.

Frictions are modeled by a viscous coefficient h;
and a Coulomb coefficient fs;:

I/ = hjg; + fs;sign(g;) (6)

8.4 Practical calculation of the Lagrange dynamic
model

The Lagrange model is calculated classically with
the Lagrange equation after calculating the ki-
netic and potential energy of all the elements of
the mechanical system, and by calculating the
generalized forces using equation (5) or by the use
of the virtual work principle (Guillo et al., 1999).
It can be calculated more efficiently using a recur-
sive algorithm based on the Newton-Euler equa-
tion, after expressing the link velocities and accel-
erations in terms of joint positions, velocities and
accelerations (Khalil and Kleinfinger, 1987). This
algorithm consists of two recursive calculations.
The forward one calculates the total forces and
moments on each body, while the backward one
leads to calculate the joint torques. The forward
recursive calculation is summarized as follows: for

j=1,--- n, we calculate successively:
Twg =7 Ai'w; (7)
Twj =Jw; +7;4;7a; (8)

jd)j = inid}i —l—Ej((jjjaj +jwi X qjjaj) (9)
]Vj = in (ZVZ + (it:}i + Z(I)ZZ(IJZ)ZPJ)
+0j(47a; + 2 wi x 4;7a;)  (10)

TRy = MV + (o +7070; Ms; (1)



Fig. 4. Forces and moments acting on a link of a
tree structure
ij :ijjd)j +jw]‘ X ijjw]' +jMSj X JV‘]
(12)

With the upper left exponent denotes the projec-
tion frame, and:

° = a(j)a

w; the angular acceleration of body j,

wj; the angular velocity of body j,

Vj the acceleration of O, origin of frame j,

F}; total forces applied on body j

M; total moments applied on body j with

respect to Oj,

e JA; the (3 x 3) orientation matrix of frame
Ri in Rj,

e a; is the unit vector along zj, thus 7a; =
[001]7,

e M; is the mass of body j,

e J; is the inertia matrix of body j, given in
frame R;,

e M S the vector of first moments of inertia of
B; around O;

e S is the skew-symmetric matrix defined from
the components of the (3 x 1) vector S by:

~ 0 —s; sy
S=1|s, 0 —s; (13)

—8y Sz 0

The forward calculation is initialized with %wg =
0, %y = 0, whereas the translational acceleration
of frame 0 will be set equal to gravity g with
opposite sign, in order to take into account au-
tomatically the effect of the gravity forces, thus
Wo = —g.

The backward recursive equations, for j =
n,---,1 calculates the forces 7f; and moments
J m; exerted on body B; by its antecedent body
B; (Fig. 4), it gives:

jfj:ij+jfej+ijs(j) (14)
s(5)

i ="A7 (15)

Joy . — AN, L J .
m; =7 M; +7me;

+30 (Fuy Dmay 9Py ) (16)
s(7)

The joint forces (or torques) are obtained by
projecting “f; (or “m;) on the joint axis z; and
by taking into account the friction and elasticity
effects as follows:

L= (07 fj+67mj)a; + 1 +T5  (17)

With:

e 5(j) indicates the body whose antecedent is
body Bj,

o f.; the external force applied by body B; on
the environment,

e m,; the external moments applied by body
B; on the environment,

o f; the forces applied by body B; on body B;,

with a(j) =1,
e m; the torques applied by body B; on body
B;.

This backward calculation is initialized by putting
jfj, jmj equal to zero for the terminal links. We
note that the contact forces between the drum and
the ground will be taken into account through f;
and me; of the terminal links (the half-drums).
The projection of these forces on the joint axes will
be obtained systematically without application of
equation (5) as would be the case if the Lagrange
equation is used.

It has to be noted that this algorithm can be
programmed numerically or symbolically. To opti-
mize its number of operations, we use customized
symbolic techniques to implement it (Khalil and
Kleinfinger, 1987). It can be proved that the dy-
namic model is linear with respect to the vector of
standard dynamic parameters Xg, thus equation
(4) can be rewritten as:

L=T+4+Q=DsgXg (18)

Where the matrix Dg is a function of (g, ¢, §).

4. APPLICATION TO THE COMPACTOR

The example presented here is that of the front
drum of the compactor. It is considered two-
dimensional motion of the compactor. This as-
sumption is realistic taking into account the op-
eration of the compactors on building site.

Our objective is to know contact forces wrenches
between the drums and the ground. A solution is
to calculate these efforts thanks to the dynamic
model of the compactor. According to the equa-
tion (18) if:

e Xg is identified,



e Dg is computed from (g, ¢, ) which have to
be measured or estimated,
e ['is measured.

Then we can computed @ the projection of con-
tact forces on joint axis.

We will show that it is not necessary to know
the complete model to calculate contact forces
wrenches. For that we will study the equations
of the dynamic model utilizing the drum-clamp
unit. The expression of models will be simplified
by combining the measurement of Fuler variables
and Lagrangian variables.

To calculate the equations of the dynamic model,
the equations of Newton-Euler (17) are used be-
tween bodies 17 to 23. The recurrence is initialized
with the Euler variables of the body 16: wig,
wig, Vig. It is thus possible to calculate joint
torques I'17 to I'a3, an analysis of these equations
proves that the expressions of I'17, I'1g, I'o; and
Iy (equations 19 to 22) are enough to compute
contact forces between the front drum and the
ground.

Taking into account the instrumentation, it was
easier to measure rather the Euler variables of the
engine supports (body 19 and 20) than that of
the drum clamp (body 16). In order to replace
the terms intervening in the equations by the
data measured, the variables wig, wig, Vig are
expressed with respect to wig, wig, weg, Woo, Vgo.

7 = (Vzlb cos(q20) — Viaf Sin(q20)) MRi19 + h17417 + k17917

- ((w§O + d23)? cos(gzo0 + g23) + (W3g + d23) sin(gz0 + q23)) MXa3

+ ((wSO + d23)? sin(a20 + q23) — (W3g + d23) cos(qzo + q23)) MYa3

+ FXo21 + FXaa
(19)

Iig = (Vzli, sin(g20) + VZyO COS(q20)) MRig + hi1gdis + kisqis

— ((w§0 + d23)% sin(a20 + q23) — (@50 + d23) cos(qao + ng)) MXa3

- (<w§0 + d23)” cos(az0 + q23) + (@3 + d23) sin(qz0 + qzs)) MYa3

+ FYa1 + FYa2
(20)

To1 = (Wig + G21)ZZ21 + ha1g21 + fs21 sign(ge1) + CZ21
(21)

Too = (W5g + G22)ZZ22 + ha2goea + fs22 sign(gez) + CZa2
(22)

with :
MRyg = Mg + Mag + Moy + Moy + Mas  (23)

The mechanical structure of the compactor does
not make it possible to differentiate the contribu-
tion from contact forces between each half-drum.
So, it is the sums of the resultants (FXo1 + F X9
and F'Ys; + F'Ya2) which are computed (equations
19 and 20). Considering the equations (21) and
(22) it is possible to compute the couples C'Zo;
and CZQQ.

5. CONCLUSION

In this paper, the dynamic modelling of a vibra-
tory compactor under the articulated mechanical
system formalism is described. This modelling is
adapted to the measurement of contact forces
wrenches. To achieve this goal,

e the model is restricted with the clamp-drum
unit,

e Lagrangian variables necessary to the calcu-
lation of the model are replaced by Euler
variable easier to measure.

Thank to this modelling, we can compute the
torque of the contact force wrench in 2D on
the condition of identifying the parameters of
the model. This step of identification through
dedicated experiments has been done. Thanks to
this modelling study, we could measure on a road
building site the torque of the efforts of contact.
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